
LEARN TO USE R
Your hands-on guide

2 Introduction

6 Getting your
data into R

10 Easy ways to do
basic data analysis

17 Painless data
visualization

26 Syntax quirks you’ll
want to know

33 Useful resources

by Sharon Machlis
edited by Johanna Ambrosio

R: a beginner’s guide

2

C O M P U T E RWO R L D . C O M

Introduction
R is hot. Whether measured by more than
6,100 add-on packages, the 41,000+ mem-
bers of LinkedIn’s R group or the 170+ R
Meetup groups currently in existence, there
can be little doubt that interest in the R sta-
tistics language, especially for data analysis,
is soaring.

Why R? It’s free, open source, powerful and
highly extensible. “You have a lot of pre-
packaged stuff that’s already available, so
you’re standing on the shoulders of giants,”
Google’s chief economist told The New York
Times back in 2009.

Because it’s a programmable environment
that uses command-line scripting, you can
store a series of complex data-analysis
steps in R. That lets you re-use your analy-
sis work on similar data more easily than if
you were using a point-and-click interface,
notes Hadley Wickham, author of several
popular R packages and chief scientist with
RStudio.

That also makes it easier for others to vali-
date research results and check your work
for errors — an issue that cropped up in the
news recently after an Excel coding error
was among several flaws found in an influ-
ential economics analysis report known as
Reinhart/Rogoff.

The error itself wasn’t a surprise, blogs
Christopher Gandrud, who earned a doc-
torate in quantitative research methodol-
ogy from the London School of Economics.

“Despite our best efforts we always will”
make errors, he notes. “The problem is that
we often use tools and practices that make
it difficult to find and correct our mistakes.”

Sure, you can easily examine complex for-
mulas on a spreadsheet. But it’s not nearly

as easy to run multiple data sets through
spreadsheet formulas to check results as it
is to put several data sets through a script,
he explains.

Indeed, the mantra of “Make sure your
work is reproducible!” is a common theme
among R enthusiasts.

Who uses R?
Relatively high-profile users of R include:

Facebook: Used by some within the com-
pany for tasks such as analyzing user
behavior.

Google: There are more than 500 R users
at Google, according to David Smith at
Revolution Analytics, doing tasks such as
making online advertising more effective.

National Weather Service: Flood forecasts.

Orbitz: Statistical analysis to suggest best
hotels to promote to its users.

Trulia: Statistical modeling.

Source: Revolution Analytics

Why not R? Well, R can appear daunting at
first. That’s often because R syntax is dif-
ferent from that of many other languages,
not necessarily because it’s any more dif-
ficult than others.

“I have written software professionally in
perhaps a dozen programming languages,
and the hardest language for me to learn
has been R,” writes consultant John D.
Cook in a Web post about R programming
for those coming from other languages.
“The language is actually fairly simple, but
it is unconventional.”

http://www.computerworld.com
http://www.linkedin.com/groups/R-Project-Statistical-Computing-77616/about
http://r-users-group.meetup.com/
http://r-users-group.meetup.com/
http://blog.revolutionanalytics.com/2013/05/how-r-grows.html
http://www.computerworld.com/s/article/9136345/Google_Update
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=3&
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=3&
http://www.nextnewdeal.net/rortybomb/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems
http://christophergandrud.blogspot.com/2013/04/reinhart-rogoff-everyone-makes-coding.html
http://christophergandrud.blogspot.com/2013/04/reinhart-rogoff-everyone-makes-coding.html
http://blog.revolutionanalytics.com/2013/05/companies-using-open-source-r-in-2013.html
http://www.johndcook.com/R_language_for_programmers.html
http://www.johndcook.com/R_language_for_programmers.html

R: a beginner’s guide

3

C O M P U T E RWO R L D . C O M

And so, this guide. Our aim here isn’t R
mastery, but giving you a path to start
using R for basic data work: Extracting key
statistics out of a data set, exploring a data
set with basic graphics and reshaping data
to make it easier to analyze.

Your first step
To begin using R, head to r-project.org to
download and install R for your desktop or
laptop. It runs on Windows, OS X and “a
wide variety of Unix platforms,” but not yet
on Android or iOS.

Installing R is actually all you need to get
started. However, I’d suggest also installing
the free R integrated development environ-
ment (IDE) RStudio. It’s got useful features
you’d expect from a coding platform, such
as syntax highlighting and tab for sug-
gested code auto-completion. I also like its
four-pane workspace, which better man-
ages multiple R windows for typing com-
mands, storing scripts, viewing command
histories, viewing visualizations and more.

 ■ Although you don’t need the free RStudio IDE to
get started, it makes working with R much easier.

The top left window is where you’ll prob-
ably do most of your work. That’s the R

code editor allowing you to create a file
with multiple lines of R code — or open an
existing file — and then run the entire file
or portions of it.

Bottom left is the interactive console where
you can type in R statements one line
at a time. Any lines of code that are run
from the editor window also appear in the
console.

The top right window shows your work-
space, which includes a list of objects cur-
rently in memory. There’s also a history tab
with a list of your prior commands; what’s
handy there is that you can select one,
some or all of those lines of code and one-
click to send them either to the console or
to whatever file is active in your code editor.

The window at bottom right shows a plot
if you’ve created a data visualization with
your R code. There’s a history of previous
plots and an option to export a plot to an
image file or PDF. This window also shows
external packages (R extensions) that are
available on your system, files in your work-
ing directory and help files when called
from the console.

Learning the shortcuts
Wickham, the RStudio chief scientist, says
these are the three most important key-
board shortcuts in RStudio:

 N Tab is a generic auto-complete function.
If you start typing in the console or editor
and hit the tab key, RStudio will suggest
functions or file names; simply select the
one you want and hit either tab or enter
to accept it.

 N Control + the up arrow (command +
up arrow on a Mac) is a similar auto-
complete tool. Start typing and hit that
key combination, and it shows you a list
of every command you’ve typed starting

http://www.computerworld.com
http://www.r-project.org/
http://www.computerworld.com/s/article/9178688/Android_news_reviews_more
http://www.rstudio.com/ide/

R: a beginner’s guide

4

C O M P U T E RWO R L D . C O M

with those keys. Select the one you want
and hit return. This works only in the
interactive console, not in the code editor
window.

 N Control + enter (command + enter on
a Mac) takes the current line of code in
the editor, sends it to the console and
executes it. If you select multiple lines of
code in the editor and then hit ctrl/cmd +
enter, all of them will run.

For more about RStudio features, including
a full list of keyboard shortcuts, head to the
online documentation.

Setting your working
directory
Change your working directory with the
setwd() function, such as:

setwd(“~/mydirectory”)

Note that the slashes always have to be for-
ward slashes, even if you’re on a Windows
system. For Windows, the command might
look something like:

setwd(“C:/Sharon/Documents/
RProjects”)

If you are using RStudio, you can also use
the menu to change your working directory
under Session > Set Working Directory.

Installing and using packages
Chances are if you’re going to be doing,
well, pretty much anything in R, you’re
going to want to take advantage of some of
the thousands of add-on packages avail-
able for R at CRAN, the Comprehensive R
Archive Network. The command for install-
ing a package is:

install.packages(“thepackagename”)

If you don’t want to type the command,
in RStudio there’s a Packages tab in the
lower right window; click that and you’ll
see a button to “Install Packages.” (There’s
also a menu command; the location varies
depending on your operating system.)

To see which packages are already installed
on your system, type:

installed.packages()

Or, in RStudio, go to the Packages tab in
the lower right window.

To use a package in your work once it’s
installed, load it with:

library(“thepackagename”)

If you’d like to make sure your packages
stay up to date, you can run:

update.packages()

and get the latest versions for all your
installed packages.

If you no longer need or want a package on
your system, use the function:

remove.packages(“thepackagename”)

Help!
If you want to find out more about a func-
tion, you can type a question mark followed
by the function name — one of the rare
times parentheses are not required in R,
like so:

?functionName

This is a shortcut to the help function,
which does use parentheses:

help(functionName)

Although I’m not sure why you’d want to
use this as opposed to the shorter ?func-
tionName command.

http://www.computerworld.com
http://www.rstudio.com/ide/docs/
http://cran.us.r-project.org/
http://cran.us.r-project.org/

R: a beginner’s guide

5

C O M P U T E RWO R L D . C O M

If you already know what a function does
and just want to see formats for using it
properly, you can type:

example(functionName)

and you’ll get a list with examples of the
function being used, if there’s one available.
The arguments (args) function:

args(functionName)

just displays a list of a function’s
arguments.

If you want to search through R’s help
documentation for a specific term, you can
use:

help.search(“your search term”)

That also has a shortcut:

??(“my search term”)

No parentheses are needed if the search
term is a single word without spaces.

http://www.computerworld.com

R: a beginner’s guide

6

C O M P U T E RWO R L D . C O M

Get your data into R
Once you’ve installed and configured R
to your liking, it’s time to start using it to
work with data. Yes, you can type your data
directly into R’s interactive console. But
for any kind of serious work, you’re a lot
more likely to already have data in a file
somewhere, either locally or on the Web.
Here are several ways to get data into R for
further work.

Sample data
If you just want to play with some test data
to see how they load and what basic func-
tions you can run, the default installation of
R comes with several data sets. Type:

data()

into the R console and you’ll get a listing
of pre-loaded data sets. Not all of them are
useful (body temperature series of two bea-
vers?), but these do give you a chance to
try analysis and plotting commands. And
some online tutorials use these sample sets.

One of the less esoteric data sets is mtcars,
data about various automobile models that
come from Motor Trends. (I’m not sure
from what year the data are from, but given
that there are entries for the Valiant and
Duster 360, I’m guessing they’re not very
recent; still, it’s a bit more compelling than
whether beavers have fevers.)

You’ll get a printout of the entire data set if
you type the name of the data set into the
console, like so:

mtcars

There are better ways of examining a data
set, which I’ll get into later in this series.
Also, R does have a print() function for

printing with more options, but R begin-
ners rarely seem to use it.

Existing local data
R has a function dedicated to reading
comma-separated files. To import a local
CSV file named filename.txt and store the
data into one R variable named mydata, the
syntax would be:

mydata <- read.csv(“filename.txt”)

(Aside: What’s that <- where you expect to
see an equals sign? It’s the R assignment
operator. I said R syntax was a bit quirky.
More on this in the section on R syntax
quirks.)

And if you’re wondering what kind of object
is created with this command, mydata is
an extremely handy data type called a data
frame — basically a table of data. A data
frame is organized with rows and columns,
similar to a spreadsheet or database table.

The read.csv function assumes that your
file has a header row, so row 1 is the name
of each column. If that’s not the case, you
can add header=FALSE to the command:

mydata <- read.csv(“filename.txt”,
header=FALSE)

In this case, R will read the first line as data,
not column headers (and assigns default
column header names you can change
later).

If your data use another character to sepa-
rate the fields, not a comma, R also has the
more general read.table function. So if your
separator is a tab, for instance, this would
work:

http://www.computerworld.com

R: a beginner’s guide

7

C O M P U T E RWO R L D . C O M

mydata <- read.table(“filename.txt”,
sep=”\t”, header=TRUE)

The command above also indicates there’s
a header row in the file with header=TRUE.

If, say, your separator is a character such
as | you would change the separator part of
the command to sep=”|”

Categories or values? Because of R’s roots
as a statistical tool, when you import non-
numerical data, R may assume that charac-
ter strings are statistical factors — things
like “poor,” “average” and “good” — or
“success” and “failure.”

But your text columns may not be catego-
ries that you want to group and measure,
just names of companies or employees. If
you don’t want your text data to be read in
as factors, add stringsAsFactor=FALSE to
read.table, like this:

mydata <- read.table(“filename.
txt”, sep=”\t”, header=TRUE,
stringsAsFactor=FALSE)

If you’d prefer, R allows you to use a series
of menu clicks to load data instead of ‘read-
ing’ data from the command line as just
described. To do this, go to the Workspace
tab of RStudio’s upper-right window, find
the menu option to “Import Dataset,” then
choose a local text file or URL.

As data are imported via menu clicks,
the R command that RStudio generated
from your menu clicks will appear in your
console. You may want to save that data-
reading command into a script file if you’re
using this for significant analysis work, so
that others — or you — can reproduce that
work.

This 3-minute YouTube video, recorded by
UCLA statistics grad student Miles Chen,
shows an RStudio point-and-click data
import.

 ■ UCLA statistics grad student Miles Chen
shows an RStudio point-and-click data import.

Copying data snippets
If you’ve got just a small section of data
already in a table — a spreadsheet, say, or a
Web HTML table — you can control-C copy
those data to your Windows clipboard and
import them into R.

The command below handles clipboard
data with a header row that’s separated by
tabs, and stores the data in a data frame
(x):

x <- read.table(file = “clipboard”,
sep=”\t”, header=TRUE)

You can read more about using the Win-
dows clipboard in R at the R For Dummies
website.

On a Mac, the pipe (“pbpaste”) function
will access data you’ve copied with com-
mand-c, so this will do the equivalent of the
previous Windows command:

x <- read.table(pipe(“pbpaste”),
sep=”\t”)

Other formats
There are R packages that will read files
from Excel, SPSS, SAS, Stata and various
relational databases. I don’t bother with
the Excel package; it requires both Java

http://www.computerworld.com
http://www.youtube.com/embed/I1K3ZijJ3LM
http://youtu.be/I1K3ZijJ3LM
http://www.dummies.com/how-to/content/how-to-use-the-clipboard-to-copy-and-paste-data-in.html
http://www.dummies.com/how-to/content/how-to-use-the-clipboard-to-copy-and-paste-data-in.html

R: a beginner’s guide

8

C O M P U T E RWO R L D . C O M

and Perl, and in general I’d rather export a
spreadsheet to CSV in hopes of not running
into Microsoft special-character prob-
lems. For more info on other formats, see
UCLA’s How to input data into R which
discusses the foreign add-on package for
importing several other statistical software
file types.

If you’d like to try to connect R with a data-
base, there are several dedicated packages
such as RPostgreSQL, RMySQL, RMongo,
RSQLite and RODBC.

(You can see the entire list of available R
packages at the CRAN website.)

Remote data
read.csv() and read.table() work pretty
much the same to access files from the Web
as they do for local data.

Do you want Google Spreadsheets data in
R? You don’t have to download the spread-
sheet to your local system as you do with a
CSV. Instead, in your Google spreadsheet
— properly formatted with just one row for
headers and then one row of data per line
— select File > Publish to the Web. (This
will make the data public, although only to
someone who has or stumbles upon the
correct URL. Beware of this process, espe-
cially with sensitive data.)

Select the sheet with your data and click
“Start publishing.” You should see a box
with the option to get a link to the pub-
lished data. Change the format type from
Web page to CSV and copy the link. Now
you can read those data into R with a com-
mand such as:

mydata <- read.csv(“http://bit.
ly/10ER84j”)

The command structure is the same for any
file on the Web. For example, Pew Research

Center data about mobile shopping are
available as a CSV file for download. You
can store the data in a variable called pew_
data like this:

pew_data <- read.csv(“http://bit.
ly/11I3iuU”)

It’s important to make sure the file you’re
downloading is in an R-friendly format
first: in other words, that it has a maximum
of one header row, with each subsequent
row having the equivalent of one data
record. Even well-formed government data
might include lots of blank rows followed
by footnotes -- that’s not what you want in
an R data table if you plan on running sta-
tistical analysis functions on the file.

Help with external data
R enthusiasts have created add-on pack-
ages to help other users download data into
R with a minimum of fuss.

For instance, the financial analysis pack-
age Quantmod, developed by quantitative
software analyst Jeffrey Ryan, makes it easy
to not only pull in and analyze stock prices
but graph them as well.

All you need are four short lines of code
to install the Quantmod package, load it,
retrieve a company’s stock prices and then
chart them using the barChart function.
Type in and run the following in your R edi-
tor window or console for Apple data:

install.packages(‘quantmod’)

library(‘quantmod’)

getSymbols(“AAPL”)

barChart(AAPL)

Want to see just the last couple of weeks?
You can use a command like this:

barChart(AAPL, subset=’last 14 days’)

http://www.computerworld.com
http://www.ats.ucla.edu/stat/r/faq/inputdata_R.htm
http://cran.r-project.org/web/packages/RPostgreSQL/index.html
http://cran.r-project.org/web/packages/RMySQL/index.html
http://cran.r-project.org/web/packages/RMongo/index.html
http://cran.r-project.org/web/packages/RSQLite/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.pewresearch.org/
http://www.pewresearch.org/

R: a beginner’s guide

9

C O M P U T E RWO R L D . C O M

chartSeries(AAPL, subset=’last 14
days’)

Or grab a particular date range like this:

barChart(A
APL[‘2013-04-01::2013-04-12’])

Quantmod is a very powerful financial
analysis package, and you can read more
about it on the Quantmod website.

There are many other packages with R
interfaces to data sources such as twit-
teR for analyzing Twitter data; Quandl
and rdatamarket for access to millions
of data sets at Quandl and Data Market,
respectively; and several for Google Analyt-
ics, including rga, RGoogleAnalytics and
ganalytics.

Looking for a specific type of data to pull
into R but don’t know where to find it? You
can try searching Quandl and Datamarket,
where data can be downloaded in R format
even without needing to install the site-
specific packages mentioned above.

Removing unneeded data
If you’re finished with variable x and want
to remove it from your workspace, use the
rm() remove function:

rm(x)

Saving your data
Once you’ve read in your data and set up
your objects just the way you want them,
you can save your work in several ways. It’s
a good idea to store your commands in a
script file, so you can repeat your work if
needed.

How best to save your commands? You
can type them first into the RStudio script
editor (top left window) instead of directly
into the interactive console, so you can

save the script file when you’re finished. If
you haven’t been doing that, you can find a
history of all the commands you’ve typed
in the history tab in the top right window;
select the ones you want and click the “to
source” menu option to copy them into a
file in the script window for saving.

You can also save your entire workspace.
While you’re in R, use the function:

save.image()

That stores your workspace to a file named
.RData by default. This will ensure you
don’t lose all your work in the event of a
power glitch or system reboot while you’ve
stepped away.

When you close R, it asks if you want to
save your workspace. If you say yes, the
next time you start R that workspace will
be loaded. That saved file will be named
.RData as well. If you have different projects
in different directories, each can have its
own .RData workspace file.

You can also save an individual R object for
later loading with the save function:

save(variablename, file=”filename.
rda”)

Reload it at any time with:

load(“filename.rda”)

http://www.computerworld.com
http://www.quantmod.com/examples/intro/
http://cran.r-project.org/web/packages/twitteR/vignettes/twitteR.pdf
http://cran.r-project.org/web/packages/twitteR/vignettes/twitteR.pdf
http://www.computerworld.com/s/article/9239637/ http://www.quandl.com/help/packages/r
http://www.computerworld.com/s/article/9239637/ http://blog.datamarket.com/2011/10/31/using-datamarket-from-within-r/
http://skardhamar.github.io/rga/
https://code.google.com/p/r-google-analytics/
https://github.com/jdeboer/ganalytics
http://www.quandl.com/
http://datamarket.com/

R: a beginner’s guide

10

C O M P U T E RWO R L D . C O M

Easy ways to do basic
data analysis
So you’ve read your data into an R object.
Now what?

Examine your data object
Before you start analyzing, you might
want to take a look at your data object’s
structure and a few row entries. If it’s a
2-dimensional table of data stored in an R
data frame object with rows and columns —
one of the more common structures you’re
likely to encounter — here are some ideas.
Many of these also work on 1-dimensional
vectors as well.

Many of the commands below assume that
your data are stored in a variable called
mydata (and not that mydata is somehow
part of these functions’ names).

If you type:

head(mydata)

R will display mydata’s column headers and
first 6 rows by default. Want to see, oh, the
first 10 rows instead of 6? That’s:

head(mydata, n=10)

Or just:

head(mydata, 10)

Note: If your object is just a 1-dimensional
vector of numbers, such as (1, 1, 2, 3, 5, 8,
13, 21, 34), head(mydata) will give you the
first 6 items in the vector.

To see the last few rows of your data, use
the tail() function:

tail(mydata)

Or:

tail(mydata, 10)

Tail can be useful when you’ve read in data
from an external source, helping to see if
anything got garbled (or there was some
footnote row at the end you didn’t notice).

To quickly see how your R object is struc-
tured, you can use the str() function:

str(mydata)

This will tell you the type of object you
have; in the case of a data frame, it will
also tell you how many rows (observations
in statistical R-speak) and columns (vari-
ables to R) it contains, along with the type
of data in each column and the first few
entries in each column.

 ■ Results of the str() function on the
sample data set PlantGrowth.

For a vector, str() tells you how many items
there are — for 8 items, it’ll display as [1:8]
— along with the type of item (number,
character, etc.) and the first few entries.

Various other data types return slightly dif-
ferent results.

If you want to see just the column names in
the data frame called mydata, you can use
the command:

colnames(mydata)

http://www.computerworld.com

R: a beginner’s guide

11

C O M P U T E RWO R L D . C O M

Likewise, if you’re interested in the row
names — in essence, all the values in the
first column of your data frame — use:

rownames(mydata)

Pull basic stats from your
data frame
Because R is a statistical programming
platform, it’s got some pretty elegant ways
to extract statistical summaries from data.
To extract a few basic stats from a data
frame, use the summary() function:

summary(mydata)

 ■ Results of the summary function on
a data set called diamonds, which is
included in the ggplot2 add-on package.

That returns some basic calculations for
each column. If the column has numbers,
you’ll see the minimum and maximum val-
ues along with median, mean, 1st quartile
and 3rd quartile. If it’s got factors such as
fair, good, very good and excellent, you’ll
get the number of each factor listed in the
column.

The summary() function also returns stats
for a 1-dimensional vector.

If you’d like even more statistical summa-
ries from a single command, install and

load the psych package. Install it with this
command:

install.packages(“psych”)

You need to run this install only once on a
system. Then load it with:

library(psych)

You need to run the library command each
time you start a new R session if you want
to use the psych package.

Now try the command:

describe(mydata)

and you’ll get several more statistics
from the data including standard devia-
tion, “mad” (mean absolute deviation),
skew (measuring whether or not the data
distribution is symmetrical) and kurtosis
(whether the data have a sharp or flatter
peak near its mean).

R has the statistical functions you’d expect,
including mean(), median(), min(), max(),
sd() [standard deviation], var() [vari-
ance] and range()which you can run on a
1-dimensional vector of numbers. (Several
of these functions — such as mean() and
median() — will not work on a 2-dimen-
sional data frame).

Oddly, the mode() function returns infor-
mation about data type instead of the
statistical mode; there’s an add-on package,
modeest, that adds a mfv() function (most
frequent value) to find the statistical mode.

R also contains a load of more sophisti-
cated functions that let you do analyses
with one or two commands: probability dis-
tributions, correlations, significance tests,
regressions, ANOVA (analysis of variance
between groups) and more.

As just one example, running the correla-
tion function cor() on a dataframe such as:

http://www.computerworld.com

R: a beginner’s guide

12

C O M P U T E RWO R L D . C O M

cor(mydata)

will give you a matrix of correlations for
each column of numerical data compared
with every other column of numerical data.

 ■ Results of the correlation function on
the sample data set of U.S.arrests.

Note: Be aware that you can run into prob-
lems when trying to run some functions
on data where there are missing values. In
some cases, R’s default is to return NA even
if just a single value is missing. For exam-
ple, while the summary() function returns
column statistics excluding missing values
(and also tells you how many NAs are in
the data), the mean() function will return
NA if even only one value is missing in a
vector.

In most cases, adding the argument:

na.rm=TRUE

to NA-sensitive functions will tell that func-
tion to remove any NAs when performing
calculations, such as:

mean(myvector, na.rm=TRUE)

If you’ve got data with some missing values,
read a function’s help file by typing a ques-
tion mark followed by the name of the func-
tion, such as:

?median

The function description should say
whether the na.rm argument is needed to
exclude missing values.

Checking a function’s help files — even for
simple functions — can also uncover addi-
tional useful options, such as an optional

trim argument for mean() that lets you
exclude some outliers.

Not all R functions need a robust data
set to be useful for statistical work. For
example, how many ways can you select a
committee of 4 people from a group of 15?
You can pull out your calculator and find 15!
divided by 4! times 11! ... or you can use the
R choose() function:

choose(15,4)

Or, perhaps you want to see all of the pos-
sible pair combinations of a group of 5
people, not simply count them. You can
create a vector with the people’s names and
store it in a variable called mypeople:

mypeople <- c(“Bob”, “Joanne”,
“Sally”, “Tim”, “Neal”)

In the example above, c() is the combine
function.

Then run the combn() function, which
takes two arguments — your entire set first
and then the number you want to have in
each group:

combn(mypeople, 2)

 ■ Use the combine function to see all pos-
sible combinations from a group.

Probably most experienced R users would
combine these two steps into one like this:

combn(c(“Bob”, “Joanne”, “Sally”,
“Tim”, “Neal”),2)

http://www.computerworld.com

R: a beginner’s guide

13

C O M P U T E RWO R L D . C O M

But separating the two can be more read-
able for beginners.

Get slices or subsets of your
data
Maybe you don’t need correlations for
every column in your data frame and you
just want to work with a couple of columns,
not 15. Perhaps you want to see data that
meets a certain condition, such as within 3
standard deviations. R lets you slice your
data sets in various ways, depending on the
data type.

To select just certain columns from a data
frame, you can either refer to the columns
by name or by their location (i.e., column 1,
2, 3, etc.).

For example, the mtcars sample data frame
has these column names: mpg, cyl, disp, hp,
drat, wt, qsec, vs, am, gear and carb.

Can’t remember the names of all the col-
umns in your data frame? If you just want
to see the column names and nothing else,
instead of functions such as str(mtcars)
and head(mtcars) you can type:

names(mtcars)

That’s handy if you want to store the names
in a variable, perhaps called mtcars.col-
names (or anything else you’d like to call
it):

mtcars.colnames <- names(mtcars)

But back to the task at hand. To access
only the data in the mpg column in mtcars,
you can use R’s dollar sign notation:

mtcars$mpg

More broadly, then, the format for access-
ing a column by name would be:

dataframename$columnname

That will give you a 1-dimensional vector of
numbers like this:

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4
22.8 19.2 17.8

[12] 16.4 17.3 15.2 10.4 10.4 14.7 32.4 30.4
33.9 21.5 15.5

[23] 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
15.0 21.4

The numbers in brackets are not part of
your data, by the way. They indicate what
item number each line is starting with. If
you’ve only got one line of data, you’ll just
see [1]. If there’s more than one line of data
and only the first 11 entries can fit on the
first line, your second line will start with
[12], and so on.

Sometimes a vector of numbers is exactly
what you want — if, for example, you want
to quickly plot mtcars$mpg and don’t need
item labels, or you’re looking for statistical
info such as variance and mean.

Chances are, though, you’ll want to sub-
set your data by more than one column
at a time. That’s when you’ll want to use
bracket notation, what I think of as rows-
comma-columns. Basically, you take the
name of your data frame and follow it by
[rows,columns]. The rows you want come
first, followed by a comma, followed by the
columns you want. So, if you want all rows
but just columns 2 through 4 of mtcars,
you can use:

mtcars[,2:4]

Do you see that comma before the 2:4?
That’s leaving a blank space where the
“which rows do you want?” portion of the
bracket notation goes, and it means “I’m
not asking for any subset, so return all.”
Although it’s not always required, it’s not a
bad practice to get into the habit of using
a comma in bracket notation so that you

http://www.computerworld.com

R: a beginner’s guide

14

C O M P U T E RWO R L D . C O M

remember whether you were slicing by col-
umns or rows.

If you want multiple columns that aren’t
contiguous, such as columns 2 AND 4 but
not 3, you can use the notation:

mtcars[,c(2,4)]

A couple of syntax notes here:

R indexes from 1, not 0. So your first col-
umn is at [1] and not [0].

R is case sensitive everywhere. mtcars$mpg
is not the same as mtcars$MPG.

mtcars[,-1] will not get you the last column
of a data frame, the way negative indexing
works in many other languages. Instead,
negative indexing in R means exclude that
item. So, mtcars[,-1] will return every col-
umn except the first one.

To create a vector of items that are not con-
tiguous, you need to use the combine func-
tion c(). Typing mtcars[,(2,4)] without the
c will not work. You need that c in there:

mtcars[,c(2,4)]

What if want to select your data by data
characteristic, such as “all cars with mpg >
20”, and not column or row location? If you
use the column name notation and add a
condition like:

mtcars$mpg>20

you don’t end up with a list of all rows
where mpg is greater than 20. Instead, you
get a vector showing whether each row
meets the condition, such as:

[1] TRUE TRUE TRUE TRUE FALSE
FALSE FALSE TRUE TRUE

[10] FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE TRUE

[19] TRUE TRUE TRUE FALSE FALSE
FALSE FALSE TRUE TRUE

[28] TRUE FALSE FALSE FALSE TRUE

To turn that into a listing of the data you
want, use that logical test condition and
row-comma-column bracket notation.
Remember that this time you want to select
rows by condition, not columns. This:

mtcars[mtcars$mpg>20,]

tells R to get all rows from mtcars where
mpg > 20, and then to return all the
columns.

If you don’t want to see all the column data
for the selected rows but are just interested
in displaying, say, mpg and horsepower
for cars with an mpg greater than 20, you
could use the notation:

mtcars[mtcars$mpg>20,c(1,4)]

using column locations, or:

mtcars[mtcars$mpg>20,c(“mpg”,”hp”)]

using the column names.

Why do you need to specify mtcars$mpg
in the row spot but “mpg” in the column
spot? Just another R syntax quirk is the
best answer I can give you.

If you’re finding that your selection state-
ment is starting to get unwieldy, you can
put your row and column selections into
variables first, such as:

mpg20 <- mtcars$mpg > 20

cols <- c(“mpg”, “hp”)

Then you can select the rows and columns
with those variables:

mtcars[mpg20, cols]

making for a more compact select state-
ment but more lines of code.

Getting tired of including the name of the
data set multiple times per command? If
you’re using only one data set and you

http://www.computerworld.com
http://www.computerworld.com/article/2497319/business-intelligence-beginner-s-guide-to-r-syntax-quirks-you-ll-want-to-know.html

R: a beginner’s guide

15

C O M P U T E RWO R L D . C O M

are not making any changes to the data
that need to be saved, you can attach and
detach a copy of the data set temporarily.

The attach() function works like this:

attach(mtcars)

So, instead of having to type:

mpg20 <- mtcars$mpg > 20

You can leave out the data set reference and
type this instead:

mpg20 <- mpg > 20

After using attach() remember to use the
detach function when you’re finished:

detach()

Some R users advise avoiding attach()
because it can be easy to forget to detach().
If you don’t detach() the copy, your vari-
ables could end up referencing the wrong
data set.

Alternative to bracket
notation
Bracket syntax is pretty common in R code,
but it’s not your only option. If you dislike
that format, you might prefer the subset()
function instead, which works with vectors
and matrices as well as data frames. The
format is:

subset(your data object, logical
condition for the rows you want to
return, select statement for the col-
umns you want to return)

So, in the mtcars example, to find all rows
where mpg is greater than 20 and return
only those rows with their mpg and hp data,
the subset() statement would look like:

subset(mtcars, mpg>20, c(“mpg”,
“hp”))

What if you wanted to find the row with the
highest mpg?

subset(mtcars, mpg==max(mpg))

If you just wanted to see the mpg informa-
tion for the highest mpg:

subset(mtcars, mpg==max(mpg), mpg)

If you just want to use subset to extract
some columns and display all rows, you can
either leave the row conditional spot blank
with a comma, similar to bracket notation:

subset(mtcars, , c(“mpg”, “hp”))

Or, indicate your second argument is for
columns with select= like this:

subset(mtcars, select=c(“mpg”, “hp”))

Update: The dplyr package, released in early
2014, is aimed at making manipulation of
data frames faster and more rational, with
similar syntax for a variety of tasks. To
select certain rows based on specific logical
criteria, you’d use the filter() function with
the syntax filter(dataframename, logi-
cal expression). As with subset(), column
names stand alone after the data frame
name, so mpg>20 and not mtcars$mpg >
20.

filter(mtcars, mpg>20)

To choose only certain columns, you use
the select() function with syntax such as
select(dataframename, columnName1,
columnName2). No quotation marks are
needed with the column names:

select(mtcars, mpg, hp)

You can also combine filter and subset with
the dplyr %>% “chaining” operation
that allows you to string together multiple
commands on a data frame. The chaining
syntax in general is:

dataframename %>%
firstfunction(argument

http://www.computerworld.com

R: a beginner’s guide

16

C O M P U T E RWO R L D . C O M

for first function) %>%
secondfunction(argument for second
function) %>% thirdfunction(argument
for third function)

So viewing just mpg and hp for rows where
mpg is greater than 20:

mtcars %>% filter(mpg > 20) %>%
select(mpg, hp)

No need to keep repeating the data frame
name. To order those results from highest
to lowest mpg, add the arrange() function
to the chain with desc(columnName) for
descending order:

mtcars %>% filter(mpg > 20)
%>% select(mpg, hp) %>%
arrange(desc(mpg))

You can find out more about dplyr in the
dplyr package’s introduction vignette.

Counting factors
To tally up counts by factor, try the table
command. For the diamonds data set, to
see how many diamonds of each category
of cut are in the data, you can use:

table(diamonds$cut)

This will return how many diamonds of
each factor — fair, good, very good, pre-
mium and ideal — exist in the data. Want to
see a cross-tab by cut and color?

table(diamonds$cut, diamonds$color)

 ■ R’s table function returns a count
of each factor in your data.

If you are interested in learning more about
statistical functions in R and how to slice
and dice your data, there are a number of
free academic downloads with many more
details. These include Learning statistics
with R by Daniel Navarro at the Univer-
sity of Adelaide in Australia (500+ page
PDF download, may take a little while).
And although not free, books such as
The R Cookbook and R in a Nutshell have
a lot of good examples and well-written
explanations.

http://www.computerworld.com
http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://health.adelaide.edu.au/psychology/ccs/docs/lsr/lsr-0.3.pdf
http://health.adelaide.edu.au/psychology/ccs/docs/lsr/lsr-0.3.pdf

R: a beginner’s guide

17

C O M P U T E RWO R L D . C O M

Painless data visualization
One of the most appealing things about R
is its ability to create data visualizations
with just a couple of lines of code.

For example, it takes just one line of code
— and a short one at that — to plot two
variables in a scatterplot. Let’s use as an
example the mtcars data set installed with
R by default. To plot the engine displace-
ment column disp on the x axis and mpg on
y:

plot(mtcars$disp, mtcars$mpg)

 ■ Default scatterplot in R.

You really can’t get much easier than that.

Of course that’s a pretty no-frills graphic. If
you’d like to label your x and y axes, use the
parameters xlab and ylab. To add a main
headline, such as “Page views by time of
day,” use the parameter main:

plot(mtcars$disp, mtcars$mpg,
xlab=”Engine displacement”,
ylab=”mpg”, main=”MPG compared with
engine displacement”)

If you find having the y-axis labels rotated
90 degrees annoying (as I do), you can
position them for easier reading with the
las=1 argument:

plot(mtcars$disp, mtcars$mpg,
xlab=”Engine displacement”,
ylab=”mpg”, main=”MPG vs engine dis-
placement”, las=1)

 ■ Adding a main headline and
axes labels to an R plot.

What’s las and why is it 1? las refers to label
style, and it’s got four options. 0 is the
default, with text always parallel to its axis.
1 is always horizontal, 2 is always perpen-
dicular to the axis and 3 is always vertical.
For much more on plot parameters, run the
help command on par like so:

?par

In addition to the basic dataviz function-
ality included with standard R, there are
numerous add-on packages to expand R’s
visualization capabilities. Some packages
are for specific disciplines such as biosta-

http://www.computerworld.com

R: a beginner’s guide

18

C O M P U T E RWO R L D . C O M

tistics or finance; others add general visual-
ization features.

Why use an add-on package if you don’t
need something discipline-specific? If
you’re doing more complex dataviz, or want
to pretty up your graphics for presenta-
tions, some packages have more robust
options. Another reason: The organization
and syntax of an add-on package might
appeal to you more than do the R defaults.

Using ggplot2
In particular, the ggplot2 package is quite
popular and worth a look for robust visu-
alizations. ggplot2 requires a bit of time to
learn its “Grammar of Graphics” approach.

But once you’ve got that down, you have a
tool to create many different types of visu-
alizations using the same basic structure.

If ggplot2 isn’t installed on your system yet,
install it with the command:

install.packages(“ggplot2”)

You only need to do this once.

To use its functions, load the ggplot2 pack-
age into your current R session — you only
need to do this once per R session — with
the library() function:

library(ggplot2)

Onto some ggplot2 examples.

ggplot2 has a “quick plot” function called
qplot() that is similar to R’s basic plot()
function but adds some options. The basic
quick plot code:

qplot(disp, mpg, data=mtcars)

generates a scatterplot.

 ■ A scatterplot from ggplot2
using the qplot() function.

The qplot default starts the y axis at a value
that makes sense to R. However, you might
want your y axis to start at 0 so you can
better see whether changes are truly mean-
ingful (starting a graph’s y axis at your first
value instead of 0 can sometimes exagger-
ate changes).

Use the ylim argument to manually set your
lower and upper y axis limits:

qplot(disp, mpg, ylim=c(0,35),
data=mtcars)

Bonus intermediate tip: Sometimes on a
scatterplot you may not be sure if a point
represents just one observation or multiple
ones, especially if you’ve got data points
that repeat — such as in this example that
ggplot2 creator Hadley Wickham generated
with the command:

http://www.computerworld.com
http://courses.had.co.nz/11-rice/slides/01-basics.pdf

R: a beginner’s guide

19

C O M P U T E RWO R L D . C O M

 ■ Some scatterplots such as this don’t show
the full picture because one point actually rep-
resents more than one entry in your data.

qplot(cty, hwy, data=mpg)

The “jitter” geom parameter introduces just
a little randomness in the point placement
so you can better see multiple points:

qplot(cty, hwy, data=mpg,
geom=”jitter”)

As you might have guessed, if there’s a
“quick plot” function in ggplot2 there’s also
a more robust, full-featured plotting func-
tion. That’s called ggplot() — yes, while the
add-on package is called ggplot2, the func-
tion is ggplot() and not ggplot2().

The code structure for a basic graph with
ggplot() is a bit more complicated than in
either plot() or qplot(); it goes as follows:

ggplot(mtcars, aes(x=disp, y=mpg)) +
geom_point()

The first argument in the ggplot() function,
mtcars, is fairly easy to understand — that’s

the data set you’re plotting. But what’s with
“aes()” and “geom_point()”?

“aes” stands for aesthetics — what are
considered visual properties of the graph.
Those are things like position in space,
color and shape.

“geom” is the graphing geometry you’re
using, such as lines, bars or the shapes of
your points.

Now if “line” and “bar” also seem like
aesthetic properties to you, similar to
shape, well, you can either accept that’s
how it works or do some deep reading into
the fundamentals behind the Grammar of
Graphics. (Personally, I just take Wick-
ham’s word for it.)

Want a line graph instead? Simply swap
out geom_point() and replace it with geom_
line() , as in this example that plots tem-
perature vs pressure in R’s sample pressure
data set:

ggplot(pressure, aes(x=temperature,
y=pressure)) + geom_line()

 ■ Creating a line graph with ggplot2.

It may be a little confusing here since both
the data set and one of its columns are
called the same thing: pressure. That first

“pressure” represents the name of the data
frame; the second, “y=pressure,” represents
the column named pressure.

In these examples, I set only x and y aes-
thetics. But there are lots more aesthetics
we could add, such as color, axes and more.

http://www.computerworld.com
http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448

R: a beginner’s guide

20

C O M P U T E RWO R L D . C O M

You can also use the ylim argument with
ggplot to change where the y axis starts. If
mydata is the name of your data frame, xcol
is the name of the column you want on the
x axis and ycol is the name of the column
you want on the y axis, use the ylim argu-
ment like this:

ggplot(mydata, aes(x=xcol, y=ycol),
ylim=0) + geom_line()

Perhaps you’d like both lines and points on
that temperature vs. pressure graph?

ggplot(pressure, aes(x=temperature,
y=pressure)) + geom_line() +
geom_point()

The point here (pun sort of intended) is
that you can start off with a simple graphic
and then add all sorts of customizations:
Set the size, shape and color of the points,
plot multiple lines with different colors,
add labels and a ton more. See Bar and line
graphs (ggplot2) for a few examples, or
the The R Graphics Cookbook by Winston
Chang for many more.

Bar graphs
To make a bar graph from the sample
BOD data frame included with R, the basic
R function is barplot(). So, to plot the
demand column from the BOD data set on
a bar graph, you can use the command:

barplot(BOD$demand)

Add main=”Graph of demand” if you want
a main headline on your graph:

barplot(BOD$demand, main=”Graph of
demand”)

 ■ Bar chart with R’s bar plot() function.

To label the bars on the x axis, use the
names.arg argument and set it to the col-
umn you want to use for labels:

barplot(BOD$demand, main=”Graph of
demand”, names.arg = BOD$Time)

Sometimes you’d like to graph the counts of
a particular variable but you’ve got just raw
data, not a table of frequencies. R’s table()
function is a quick way to generate counts
for each factor in your data.

The R Graphics Cookbook uses an example
of a bar graph for the number of 4-, 6- and
8-cylinder vehicles in the mtcars data
set. Cylinders are listed in the cyl column,
which you can access in R using mtcars$cyl.

Here’s code to get the count of how many
entries there are by cylinder with the
table() function; it stores results in a vari-
able called cylcount:

cylcount <- table(mtcars$cyl)

 ■ Creating a bar plot.

That creates a table called cylcount
containing:

4 6 8

http://www.computerworld.com
http://www.cookbook-r.com/Graphs/Bar_and_line_graphs_(ggplot2)/
http://www.cookbook-r.com/Graphs/Bar_and_line_graphs_(ggplot2)/
http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang/dp/1449316956/

R: a beginner’s guide

21

C O M P U T E RWO R L D . C O M

11 7 14

Now you can create a bar graph of the cyl-
inder count:

barplot(cylcount)

ggplot2’s qplot() quick plotting function
can also create bar graphs:

qplot(mtcars$cyl)

 ■ What happens to your bar chart when you
don’t instruct R not to plot continuous variables.

However, this defaults to an assump-
tion that 4, 6 and 8 are part of a variable
set that could run from 4 through 8, so it
shows blank entries for 5 and 7.

To treat cylinders as distinct groups — that
is, you’ve got a group with 4 cylinders, a
group with 6 and a group with 8, not the
possibility of entries anywhere between 4
and 8 — you want cylinders to be treated as
a statistical factor:

qplot(factor(mtcars$cyl))

To create a bar graph with the more robust
ggplot() function, you can use syntax such
as:

ggplot(mtcars, aes(factor(cyl))) +
geom_bar()

Histograms
Histograms work pretty much the same,
except you want to specify how many buck-
ets or bins you want your data to be sepa-
rated into. For base R graphics, use:

hist(mydata$columnName, breaks = n)

where columnName is the name of your
column in a mydata dataframe that you
want to visualize, and n is the number of
bins you want.

The ggplot2 commands are:

qplot(columnName, data=mydata,
binwidth=n)

For quick plots and, for the more robust
ggplot():

ggplot(mydata, aes(x=columnName)) +
geom_histogram(binwidth=n)

You may be starting to see strong similari-
ties in syntax for various ggplot() examples.
While the ggplot() function is somewhat
less intuitive, once you wrap your head
around its general principles, you can do
other types of graphics in a similar way.

Additional graphics options
There are many more graphics types in R
than these few I’ve mentioned. Boxplots,
a statistical staple showing minimum and
maximum, first and third quartiles and
median, have their own function called,
intuitively, boxplot(). If you want to see a
boxplot of the mpg column in the mtcars
data frame it’s as simple as:

boxplot(mtcars$mpg)

To see side-by-side boxplots in a single
plot, such as the x, y and z measurements
of all the diamonds in the diamonds sam-
ple data set included in ggplot2:

http://www.computerworld.com

R: a beginner’s guide

22

C O M P U T E RWO R L D . C O M

boxplot(diamonds$x, diamonds$y,
diamonds$z)

Creating a heat map in R is more complex
but not ridiculously so. There’s an easy-to-
follow tutorial on Flowing Data.

You can do graphical correlation matri-
ces with the corrplot add-on package and
generate numerous probability distribu-
tions. See some of the links here or in the
resources section to find out more.

Using color
Looking at nothing but black and white
graphics can get tiresome after a while. Of
course, there are numerous ways of using
color in R.

Colors in R have both names and numbers
as well as the usual RGB hex code, HSV
(hue, saturation and value) specs and oth-
ers. And when I say “names,” I don’t mean
just the usual “red,” “green,” “blue,” “black”
and “white.” R has 657 named colors. The
colors() or colours() function — R does not
discriminate against either American or
British English — gives you a list of all of
them. If you want to see what they look like,
not just their text names, you can get a full,
multi-page PDF chart with color numbers,
colors names and swatches, sorted in vari-
ous ways. Or you can find just the names
and color swatches for each.

There are also R functions that automati-
cally generate a vector of n colors using a
specific color palette such as “rainbow” or
“heat”:

rainbow(n)

heat.colors(n)

terrain.colors(n)

topo.colors(n)

cm.colors(n)

So, if you want five colors from the rainbow
palette, use:

rainbow(5)

For many more details, check the help com-
mand on a palette such as:

?rainbow

 ■ Using three colors in the R rainbow palette.

Now that you’ve got a list of colors, how do
you get them in your graphic? Here’s one
way. Say you’re drawing a 3-bar barchart
using ggplot() and want to use 3 colors
from the rainbow palette. You can create a
3-color vector like:

mycolors <- rainbow(3)

Or for the heat.colors pallette:

mycolors <- heat.colors(3)

Now instead of using the geom_bar()
function without any arguments, add
fill=mycolors to geombar() like this:

ggplot(mtcars, aes(x=factor(cyl))) +
geom_bar(fill=mycolors)

You don’t need to put your list of colors
in a separate variable, by the way; you can
merge it all in a single line of code such as:

ggplot(mtcars, aes(x=factor(cyl))) +
geom_bar(fill=rainbow(3))

But it may be easier to separate the colors
out if you want to create your own list of
colors instead of using one of the defaults.

http://www.computerworld.com
http://flowingdata.com/2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/
http://flowingdata.com/2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/
http://cran.r-project.org/web/packages/corrplot/corrplot.pdf
http://blog.revolutionanalytics.com/2013/03/rs-garden-of-probability-distributions.html
http://blog.revolutionanalytics.com/2013/03/rs-garden-of-probability-distributions.html
http://www.computerworld.com/s/article/9239799
http://www.computerworld.com/s/article/9239799
http://research.stowers-institute.org/efg/R/Color/Chart/
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

R: a beginner’s guide

23

C O M P U T E RWO R L D . C O M

The basic R plotting functions can also
accept a vector of colors, such as:

barplot(BOD$demand, col=rainbow(6))

You can use a single color if you want all
the items to be one color (but not mono-
chrome), such as

barplot(BOD$demand, col=”royalblue3”)

Chances are, you’ll want to use color to
show certain characteristics of your data,
as opposed to simply assigning random
colors in a graphic. That goes a bit beyond
beginning R, but to give one example, say
you’ve got a vector of test scores:

testscores <- c(96, 71, 85, 92, 82,
78, 72, 81, 68, 61, 78, 86, 90)

You can do a simple barplot of those scores
like this:

barplot(testscores)

And you can make all the bars blue like this:

barplot(testscores, col=”blue”)

But what if you want the scores 80 and
above to be blue and the lower scores to be
red? To do this, create a vector of colors
of the same length and in the same order
as your data, adding a color to the vector
based on the data. In other words, since
the first test score is 96, the first color in
your color vector should be blue; since the
second score is 71, the second color in your
color vector should be red; and so on.

Of course, you don’t want to create that
color vector manually! Here’s a statement
that will do so:

testcolors <- ifelse(testscores >=
80, “blue”, “red”)

If you’ve got any programming experience,
you might guess that this creates a vec-
tor that loops through the testscores data
and runs the conditional statement: ‘If this

entry in testscores is greater than or equal
to 80, add “blue” to the testcolors vec-
tor; otherwise add “red” to the testcolors
vector.’

Now that you’ve got the list of colors prop-
erly assigned to your list of scores, just add
the testcolors vector as your desired color
scheme:

barplot(testscores, col=testcolors)

Note that the name of a color must be in
quotation marks, but a variable name that
holds a list of colors should not be within
quote marks.

Add a graph headline:

barplot(testscores, col=testcolors,
main=”Test scores”)

And have the y axis go from 0 to 100:

barplot(testscores, col=testcolors,
main=”Test scores”, ylim=c(0,100))

Then use las-1 to style the axis label to
be horizontal and not turned 90 degrees
vertical:

barplot(testscores, col=testcolors,
main=”Test scores”, ylim=c(0,100),
las=1)

And you’ve got a color-coded bar graph.

 ■ A color-coded bar graph.

By the way, if you wanted the scores sorted
from highest to lowest, you could have set
your original testscores variable to:

http://www.computerworld.com

R: a beginner’s guide

24

C O M P U T E RWO R L D . C O M

testscores <- sort(c(96, 71, 85, 92,
82, 78, 72, 81, 68, 61, 78, 86, 90),
decreasing = TRUE)

The sort() function defaults to ascending
sort; for descending sort you need the addi-
tional argument: decreasing = TRUE.

If that code above is starting to seem
unwieldy to you as a beginner, break it
into two lines for easier reading, and per-
haps also set a new variable for the sorted
version:

testscores <- c(96, 71, 85, 92, 82,
78, 72, 81, 68, 61, 78, 86, 90)

testscores_sorted <- sort(testscores,
decreasing = TRUE)

If you had scores in a data frame called
results with one column of student names
called students and another column of
scores called testscores, you could use the
ggplot2 package’s ggplot() function as well:

ggplot(results, aes(x=students,
y=testscores)) + geom_
bar(fill=testcolors, stat =
“identity”)

 ■ Coloring bars by factor.

Why stat = “identity”? That’s needed here
to show that the y axis represents a numer-
ical value as opposed to an item count.

ggplot2’s qplot() also has easy ways to
color bars by a factor, such as number of
cylinders, and then automatically gener-
ate a legend. Here’s an example of graph
counting the number of 4-, 6- and 8-cylin-
der cars in the mtcars data set:

qplot(factor(cyl), data=mtcars,
geom=”bar”, fill=factor(cyl))

But, as I said, we’re getting somewhat
beyond a beginner’s overview of R when
coloring by factor. For a few more examples
and details for many of the themes cov-
ered here, you might want to see the online
tutorial Producing Simple Graphs with R.
For more on graphing with color, check
out a source such as the R Graphics Cook-
book. The ggplot2 documentation also has
a lot of examples, such as this page for bar
geometry.

Exporting your graphics
You can save your R graphics to a file for
use outside the R environment. RStudio
has an export option in the plots tab of the
bottom right window.

http://www.computerworld.com
http://www.harding.edu/fmccown/r/
http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang/dp/1449316956/
http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang/dp/1449316956/
http://docs.ggplot2.org/current/geom_bar.html
http://docs.ggplot2.org/current/geom_bar.html

R: a beginner’s guide

25

C O M P U T E RWO R L D . C O M

 ■ Exporting your graphics from RStudio.

If you are using “plain” R in Windows, you
can also right-click the graphics window to
save the file.

To save a plot with R commands and not
point-and-click, first create a container for
your image using a function such as jpeg(),
png(), svg() or pdf(). Those functions need
to have a file name as one argument and
optionally width and height, such as:

jpeg(“myplot.jpg”, width=350,
height=420)

Generate the plot with whatever graphics
functions it requires, such as:

barplot(BOD$demand, col=rainbow(6))

And then issue the command:

dev.off()

That will save your graphic to its container.

If you are using ggplot2, you can also
use the function ggsave(), which defaults
to saving the last plot you created using
ggplot2 at the size you displayed it. Based
on the filename you pass to the ggsave()
function, it will save in the appropriate for-

mat — myplot.jpg saves as a JPEG, myplot.
png saves as a PNG and so on.

One final note: If you’re working in RStu-
dio and would like to see a larger version
of your plot, click the Zoom button and a
larger window with the current graphic will
open. And, also in RStudio, to see previ-
ous plots from your session, click the back
arrow.

http://www.computerworld.com
http://docs.ggplot2.org/0.9.2.1/ggsave.html

R: a beginner’s guide

26

C O M P U T E RWO R L D . C O M

Syntax quirks you’ll
want to know
I mentioned at the outset that R syntax
is a bit quirky, especially if your frame of
reference is, well, pretty much any other
programming language. Here are some
unusual traits of the language you may find
useful to understand as you embark on your
journey to learn R.

Assigning values to variables
In pretty much every other programming
language I know, the equals sign assigns a
certain value to a variable. You know, x = 3
means that x now holds the value of 3.

Not in R. At least, not necessarily.

In R, the primary assignment operator is
<- as in:

x <- 3

But not:

x = 3

To add to the potential confusion, the
equals sign actually can be used as an
assignment operator in R — but not all the
time. When can you use it and when can
you not?

The best way for a beginner to deal with
this is to use the preferred assignment
operator <- and forget that equals is
ever allowed. Hey, if it’s good enough for
Google’s R style guide — they advise not
using equals to assign values to variables —
it’s good enough for me.

(If this isn’t a good enough explanation for
you, however, and you really really want to

know the ins and outs of R’s 5 — yes, count
‘em, 5 — assignment options, check out the
R manual’s Assignment Operators page.)

One more note about variables: R is a case-
sensitive language. So, variable x is not the
same as X. That applies to pretty much
everything in R; for example, the function
subset() is not the same as Subset().

c is for combine (or
concatenate, and sometimes
convert/coerce.)
When you create an array in most program-
ming languages, the syntax goes something
like this:

myArray = array(1, 1, 2, 3, 5, 8);

Or:

int myArray = {1, 1, 2, 3, 5, 8};

Or maybe:

myArray = [1, 1, 2, 3, 5, 8]

In R, though, there’s an extra piece: To put
multiple values into a single variable, you
need the c() function, such as:

my_vector <- c(1, 1, 2, 3, 5, 8)

If you forget that c, you’ll get an error.
When you’re starting out in R, you’ll prob-
ably see errors relating to leaving out that
c() a lot. (At least I certainly did.)

And now that I’ve stressed the importance
of that c() function, I (reluctantly) will tell
you that there’s a case when you can leave

http://www.computerworld.com
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html#assignment
http://stat.ethz.ch/R-manual/R-patched/library/base/html/assignOps.html

R: a beginner’s guide

27

C O M P U T E RWO R L D . C O M

it out — if you’re referring to consecutive
values in a range with a colon between
minimum and maximum, like this:

my_vector <- (1:10)

I bring up this exception because I’ve run
into that style quite a bit in R tutorials and
texts, and it can be confusing to see the c
required for some multiple values but not
others. Note that it won’t hurt anything
to use the c with a colon-separated range,
though, even if it’s not required, such as:

my_vector <- c(1:10)

One more very important point about the
c() function: It assumes that everything in
your vector is of the same data type — that
is, all numbers or all characters. If you cre-
ate a vector such as:

my_vector <- c(1, 4, “hello”, TRUE)

You will not have a vector with two integer
objects, one character object and one logi-
cal object. Instead, c() will do what it can
to convert them all into all the same object
type, in this case all character objects. So
my_vector will contain “1”, “4”, “hello” and
“TRUE”. In other words, c() is also for “con-
vert” or “coerce.”

To create a collection with multiple object
types, you need a list, not a vector. You
create a list with the list() function, not c(),
such as:

My_list <- list(1,4,”hello”, TRUE)

Now you’ve got a variable that holds the
number 1, the number 4, the character
object “hello” and the logical object TRUE.

Loopless loops
Iterating through a collection of data with
loops like “for” and “while” is a corner-
stone of many programming languages.
That’s not the R way, though. While R does

have for, while and repeat loops, you’ll
more likely see operations applied to a data
collection using apply() functions or by
using the plyr() add-on package functions.

But first, some basics.

If you’ve got a vector of numbers such as:

my_vector <- c(7,9,23,5)

and, say, you want to multiply each by 0.01
to turn them into percentages, how would
you do that? You don’t need a for, foreach
or while loop. Instead, you can create a new
vector called my_pct_vectors like this:

my_pct_vector <- my_vector * 0.01

Performing a mathematical operation on
a vector variable will automatically loop
through each item in the vector.

Typically in data analysis, though, you
want to apply functions to subsets of data:
Finding the mean salary by job title or the
standard deviation of property values by
community. The apply() function group
and plyr add-on package are designed for
that.

There are more than half a dozen functions
in the apply family, depending on what type
of data object is being acted upon and what
sort of data object is returned. “These func-
tions can sometimes be frustratingly diffi-
cult to get working exactly as you intended,
especially for newcomers to R,” says a blog
post at Revolution Analytics, which focuses
on enterprise-class R.

Plain old apply() runs a function on either
every row or every column of a 2-dimen-
sional matrix where all columns are the
same data type. For a 2-D matrix, you also
need to tell the function whether you’re
applying by rows or by columns: Add the
argument 1 to apply by row or 2 to apply by
column. For example:

http://www.computerworld.com
http://cran.r-project.org/doc/manuals/r-release/R-lang.html#Looping
http://blog.revolutionanalytics.com/2009/12/why-use-plyr.html
http://blog.revolutionanalytics.com/2009/12/why-use-plyr.html

R: a beginner’s guide

28

C O M P U T E RWO R L D . C O M

apply(my_matrix, 1, median)

returns the median of every row in my_
matrix and

apply(my_matrix, 2, median)

calculates the median of every column.

Other functions in the apply() family such
as lapply() or tapply() deal with different
input/output data types. Australian statisti-
cal bioinformatician Neal F.W. Saunders
has a nice brief introduction to apply in R
in a blog post if you’d like to find out more
and see some examples. (In case you’re
wondering, bioinformatics involves issues
around storing, retrieving and organizing
biological data, not just analyzing it.)

Many R users who dislike the the apply
functions don’t turn to for-loops, but
instead install the plyr package created by
Hadley Wickham. He uses what he calls
the “split-apply-combine” model of dealing
with data: Split up a collection of data the
way you want to operate on it, apply what-
ever function you want to each of your data
group(s) and then combine them all back
together again.

The plyr package is probably a step beyond
this basic beginner’s guide; but if you’d like
to find out more about plyr, you can head to
Wickham’s plyr website. There’s also a use-
ful slide presentation on plyr in PDF format
from Cosma Shalizi, an associate professor
of statistics at Carnegie Mellon University,
and Vincent Vu. Another PDF presentation
on plyr is from an introduction to R work-
shop at Iowa State University.

R data types in brief (very
brief)
Should you learn about all of R’s data types
and how they behave right off the bat, as
a beginner? If your goal is to be an R ninja

then, yes, you’ve got to know the ins and
outs of data types. But my assumption is
that you’re here to try generating quick
plots and stats before diving in to create
complex code.

So, to start off with the basics, here’s what
I’d suggest you keep in mind for now: R
has multiple data types. Some of them
are especially important when doing basic
data work. And some functions that are
quite useful for doing your basic data work
require your data to be in a particular type
and structure.

More specifically, R has the “Is it an inte-
ger or character or true/false?” data type,
the basic building blocks. R has several of
these including integer, numeric, charac-
ter and logical. Missing values are repre-
sented by NaN (if a mathematical function
won’t work properly) or NA (missing or
unavailable).

As mentioned in the prior section, you can
have a vector with multiple elements of the
same type, such as:

1, 5, 7

or

“Bill”, “Bob”, “Sue”

>

A single number or character string is also
a vector — a vector of 1. When you access
the value of a variable that’s got just one
value, such as 73 or “Learn more about R at
Computerworld.com,” you’ll also see this in
your console before the value:

[1]

That’s telling you that your screen print-
out is starting at vector item number one.
If you’ve got a vector with lots of values
so the printout runs across multiple lines,
each line will start with a number in brack-

http://www.computerworld.com
http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/
http://plyr.had.co.nz/
http://www.stat.cmu.edu/~cshalizi/statcomp/11/lectures/14/lecture-14.pdf
http://www.stat.cmu.edu/~cshalizi/statcomp/11/lectures/14/lecture-14.pdf
http://streaming.stat.iastate.edu/workshops/r-intro/lectures/6-advancedmanipulation.pdf
http://streaming.stat.iastate.edu/workshops/r-intro/lectures/6-advancedmanipulation.pdf
http://streaming.stat.iastate.edu/workshops/r-intro/
http://streaming.stat.iastate.edu/workshops/r-intro/

R: a beginner’s guide

29

C O M P U T E RWO R L D . C O M

ets, telling you which vector item number
that particular line is starting with. (See the
screen shot, below.)

 ■ If you’ve got a vector with lots of val-
ues so the printout runs across multiple
lines, each line will start with a number in
brackets, telling you which vector item num-
ber that particular line is starting with.

If you want to mix numbers and strings
or numbers and TRUE/FALSE types, you
need a list. (If you don’t create a list, you
may be unpleasantly surprised that your
variable containing (3, 8, “small”) was
turned into a vector of characters (“3”, “8”,
“small”)).

And by the way, R assumes that 3 is the
same class as 3.0 — numeric (i.e., with
a decimal point). If you want the integer
3, you need to signify it as 3L or with the
as.integer() function. In a situation where
this matters to you, you can check what
type of number you’ve got by using the
class() function:

class(3)

class(3.0)

class(3L)

class(as.integer(3))

There are several as() functions for con-
verting one data type to another, including
as.character(), as.list() and as.data.frame().

R also has special vector and list types
that are of special interest when analyzing
data, such as matrices and data frames. A
matrix has rows and columns; you can find
a matrix dimension with dim() such as

dim(my_matrix)

A matrix needs to have all the same data
type in every column, such as numbers
everywhere.

Data frames are like matrices except one
column can have a different data type from
another column, and each column must
have a name. If you’ve got data in a format
that might work well as a database table (or
well-formed spreadsheet table), it will also
probably work well as an R data frame.

In a data frame, you can think of each row
as similar to a database record and each
column like a database field. There are lots
of useful functions you can apply to data
frames, some of which I’ve gone over in
earlier sections, such as summary() and the
psych package’s describe().

And speaking of quirks: There are several
ways to find an object’s underlying data
type, but not all of them return the same
value. For example, class() and str() will
return data.frame on a data frame object,
but mode() returns the more generic list.

If you’d like to learn more details about
data types in R, you can watch this video
lecture by Roger Peng, associate profes-
sor of biostatistics at the Johns Hopkins
Bloomberg School of Public Health:

http://www.computerworld.com
http://www.youtube.com/embed/5AQM-yUX9zg
http://www.youtube.com/embed/5AQM-yUX9zg

R: a beginner’s guide

30

C O M P U T E RWO R L D . C O M

 ■ Roger Peng, associate professor of biosta-
tistics at the Johns Hopkins Bloomberg School
of Public Health, explains data types in R.

One more useful concept to wrap up this
section — hang in there, we’re almost
done: factors. These represent categories
in your data. So, if you’ve got a data frame
with employees, their department and
their salaries, salaries would be numerical
data and employees would be characters
(strings in many other languages); but
you’d likely want department to be a factor
— in other words, a category you may want
to group or model your data by. Factors
can be unordered, such as department, or
ordered, such as “poor”, “fair”, “good” and

“excellent.”

R command line differs from
the Unix shell
When you start working in the R environ-
ment, it looks quite similar to a Unix shell.
In fact, some R command-line actions
behave as you’d expect if you come from a
Unix environment, but others don’t.

Want to cycle through your last few com-
mands? The up arrow works in R just as it
does in Unix — keep hitting it to see prior
commands.

The list function, ls(), will give you a list,
but not of files as in Unix. Rather, it will

provide a list of objects in your current R
session.

Want to see your current working direc-
tory? pwd just throws an error; what you
want is getwd().

rm(my_variable) will delete a variable from
your current session.

R does include a Unix-like grep() function.
For more on using grep in R, see this brief
writeup on Regular Expressions with The R
Language at regular-expressions.info.

Terminating your R
expressions
R doesn’t need semicolons to end a line of
code (although it’s possible to put multiple
commands on a single line separated by
semicolons, you don’t see that very often).
Instead, R uses line breaks (i.e., new line
characters) to determine when an expres-
sion has ended.

What if you want one expression to go
across multiple lines? The R interpreter
tries to guess if you mean for it to continue
to the next line: If you obviously haven’t
finished a command on one line, it will
assume you want to continue instead of
throwing an error. Open some parenthe-
ses without closing them, use an open
quote without a closing one or end a line
with an operator like + or - and R will wait
to execute your command until it comes
across the expected closing character and
the command otherwise looks finished.

Syntax cheating: Run SQL
queries in R
If you’ve got SQL experience and R syntax
starts giving you a headache — especially
when you’re trying to figure out how to

http://www.computerworld.com
https://www.youtube.com/watch?v=5AQM-yUX9zg
http://www.regular-expressions.info/rlanguage.html
http://www.regular-expressions.info/rlanguage.html

R: a beginner’s guide

31

C O M P U T E RWO R L D . C O M

get a subset of data with proper R syntax
— you might start longing for the ability to
run a quick SQL SELECT command query
your data set.

You can.

The add-on package sqldf lets you run
SQL queries on an R data frame (there are
separate packages allowing you to connect
R with a local database). Install and load
sqldf, and then you can issue commands
such as:

sqldf(“select * from mtcars where mpg
> 20 order by mpg desc”)

This will find all rows in the mtcars sample
data frame that have an mpg greater than
20, ordered from highest to lowest mpg.

Most R experts will discourage newbies
from “cheating” this way: Falling back
on SQL makes it less likely you’ll power
through learning R syntax. However, it’s
there for you in a pinch — or as a useful
way to double-check whether you’re get-
ting back the expected results from an R
expression.

Examine and edit data with a
GUI
And speaking of cheating, if you don’t want
to use the command line to examine and
edit your data, R has a couple of options.
The edit() function brings up an editor
where you can look at and edit an R object,
such as

edit(mtcars)

 ■ Invoking R’s data editing win-
dow with the edit() function.

This can be useful if you’ve got a data set
with a lot of columns that are wrapping in
the small command-line window. However,
since there’s no way to save your work as
you go along — changes are saved only
when you close the editing window — and
there’s no command-history record of what
you’ve done, the edit window probably isn’t
your best choice for editing data in a proj-
ect where it’s important to repeat/repro-
duce your work.

In RStudio you can also examine a data
object (although not edit it) by clicking on
it in the workspace tab in the upper right
window.

Saving and exporting your
data
In addition to saving your entire R work-
space with the save.image() function and
various ways to save plots to image files,
you can save individual objects for use in
other software. For example, if you’ve got a
data frame just so and would like to share it
with colleagues as a tab- or comma-delim-
ited file, say for importing into a spread-
sheet, you can use the command:

http://www.computerworld.com
http://www.statmethods.net/input/dbinterface.html

R: a beginner’s guide

32

C O M P U T E RWO R L D . C O M

write.table(myData, “testfile.txt”,
sep=”\t”)

This will export all the data from an R
object called myData to a tab-separated file
called testfile.txt in the current working
directory. Changing sep=”\t” to sep=”c” will
generated a comma-separated file and so
on.

http://www.computerworld.com

R: a beginner’s guide

33

C O M P U T E RWO R L D . C O M

60+ R resources to
improve your data skills
This list was originally published as part of
the Computerworld Beginner’s Guide to R
but has since been expanded to also include
resources for advanced beginner and interme-
diate users.

These websites, videos, blogs, social media/
communities, software and books/ebooks
can help you do more with R.; my favorites
are listed in bold.

Books and e-books
R Cookbook. Like the rest of the O’Reilly
Cookbook series, this one offers how-to
“recipes” for doing lots of different tasks,
from the basics of R installation and creat-
ing simple data objects to generating prob-
abilities, graphics and linear regressions. It
has the added bonus of being well written.
If you like learning by example or are seek-
ing a good R reference book, this is well
worth adding to your reference library. By
Paul Teetor, a quantitative developer work-
ing in the financial sector.

R Graphics Cookbook. If you want to do
beyond-the-basics graphics in R, this is a
useful resource both for its graphics recipes
and brief introduction to ggplot2. While
this goes way beyond the graphics capabili-
ties that I need in R, I’d recommend this if
you’re looking to move beyond advanced-
beginner plotting. By Winston Chang, a
software engineer at RStudio.

R in Action: Data analysis and graphics
with R. This book aims at all levels of users,
with sections for beginning, intermediate
and advanced R ranging from “Exploring

R data structures” to running regressions
and conducting factor analyses. The begin-
ner’s section may be a bit tough to follow
if you haven’t had any exposure to R, but
it offers a good foundation in data types,
imports and reshaping once you’ve had a
bit of experience. There are some particu-
larly useful explanations and examples for
aggregating, restructuring and subsetting
data, as well as a lot of applied statistics.
Note that if your interest in graphics is
learning ggplot2, there’s relatively little
on that here compared with base R graph-
ics and the lattice package. You can see
an excerpt from the book online: Aggrega-
tion and restructuring data. By Robert I.
Kabacoff.

The Art of R Programming. For those who
want to move beyond using R “in an ad hoc
way ... to develop[ing] software in R.” This
is best if you’re already at least moderately
proficient in another programming lan-
guage. It’s a good resource for systemati-
cally learning fundamentals such as types
of objects, control statements (unlike many
R purists, the author doesn’t actively dis-
courage for loops), variable scope, classes
and debugging — in fact, there’s nearly as
large a chapter on debugging as there is on
graphics. With some robust examples of
solving real-world statistical problems in R.
By Norman Matloff.

R in a Nutshell. A reasonably readable
guide to R that teaches the language’s
fundamentals — syntax, functions, data
structures and so on — as well as how-to
statistical and graphics tasks. Useful if you

http://www.computerworld.com
http://www.amazon.com/Cookbook-OReilly-Cookbooks-Paul-Teetor/dp/0596809158/
http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang/dp/1449316956/
http://www.manning.com/kabacoff/
http://www.manning.com/kabacoff/
http://www.r-statistics.com/2012/01/aggregation-and-restructuring-data-from-r-in-action/
http://www.r-statistics.com/2012/01/aggregation-and-restructuring-data-from-r-in-action/
http://www.amazon.com/The-Art-Programming-Statistical-ebook/dp/B00683GXUO/
http://www.amazon.com/R-Nutshell-Joseph-Adler/dp/144931208X/

R: a beginner’s guide

34

C O M P U T E RWO R L D . C O M

want to start writing robust R programs, as
it includes sections on functions, object-
oriented programming and high-perfor-
mance R. By Joseph Adler, a senior data
scientist at LinkedIn.

Visualize This. Note; Most of this book is
not about R, but there are several examples
of visualizing data with R. And there’s so
much other interesting info here about how
to tell stories with data that it’s worth a
read. By Nathan Yau, who runs the popular
Flowing Data blog and whose doctoral dis-
sertation was on “personal data collection
and how we can use visualization to learn
about ourselves.”

R For Dummies. I haven’t had a chance to
read this one, but it’s garnered some good
reviews on Amazon.com. If you’re familiar
with the Dummies series and have found
them helpful in the past, you might want to
check this one out. You can get a taste of
the authors’ style in the Programming in R
section of Dummies.com, which has more
than a 100 short sections such as How to
construct vectors in R and How to use the
apply family of functions in R. By Joris
Meys and Andrie de Vries.

Introduction to Data Science. It’s highly
readable, packed with useful examples and
free — what more could you want? This
e-book isn’t technically an “R book,” but it
uses R for all of its examples as it teaches
concepts of data analysis. If you’re familiar
with that topic you may find some of the
explanations rather basic, but there’s still a
lot of R code for things like analyzing tweet
rates (including a helpful section on how to
get Twitter OAuth authorization working in
R), simple map mashups and basic linear
regression. Although Stanton calls this an
“electronic textbook,” Introduction to Data
Science has a conversational style that’s
pleasantly non-textbook like. There used to

be a downloadable PDF, but now the only
versions are for OS X or iOS.

R for Everyone. Author Jared P. Lander
promises to go over “20% of the function-
ality needed to accomplish 80% of the
work.” And in fact, topics that are actually
covered, are covered pretty well; but be
warned that some items appearing in the
table of contents can be a little thin. This
is still a well-organized reference, though,
with information that beginning and inter-
mediate users might want to know: import-
ing data, generating graphs, grouping and
reshaping data, working with basic stats
and more.

Statistical Analysis With R: Beginner’s
Guide. This book has you “pretend” you’re
a strategist for an ancient Chinese king-
dom analyzing military strategies with R.
If you find that idea hokey, move along to
see another resource; if not, you’ll get a
beginner-level introduction to various tasks
in R, including tasks you don’t always see
in an intro text, such as multiple linear
regressions and forecasting. Note: My early
e-version had a considerable amount of bad
spaces in my Kindle app, but it was still
certainly readable and usable.

Reproducible Research with R and RStudio.
Although categorized as a “bioinformat-
ics” textbook (and priced that way — even
the Kindle edition is more than $50), this
is more general advice on steps to make
sure you can document and present your
work. This includes numerous sections on
creating report documents using the knitr
package, LaTeX and Markdown — tasks
not often covered in-depth in general R
books. The author has posted source code
for generating the book on GitHub, though,
if you want to create an electronic version
of it yourself.

http://www.computerworld.com
http://www.amazon.com/gp/product/0470944889/
http://flowingdata.com/
http://www.amazon.com/R-Dummies-Joris-Meys/dp/1119962846
http://www.dummies.com/how-to/computers-software/programming/R.html
http://www.dummies.com/how-to/computers-software/programming/R.html
http://www.dummies.com/how-to/content/how-to-construct-vectors-in-r.html
http://www.dummies.com/how-to/content/how-to-construct-vectors-in-r.html
http://www.dummies.com/how-to/content/how-to-use-the-apply-family-of-functions-in-r.html
http://www.dummies.com/how-to/content/how-to-use-the-apply-family-of-functions-in-r.html
https://itunes.apple.com/us/book/introduction-to-data-science/id529088127?mt=11
http://www.informit.com/store/r-for-everyone-advanced-analytics-and-graphics-9780321888037
http://www.packtpub.com/statistical-analysis-with-r-beginners-guide/book
http://www.packtpub.com/statistical-analysis-with-r-beginners-guide/book
http://www.amazon.com/Reproducible-Research-RStudio-Chapman-Series/dp/1466572841
https://github.com/christophergandrud/Rep-Res-Book
https://github.com/christophergandrud/Rep-Res-Book

R: a beginner’s guide

35

C O M P U T E RWO R L D . C O M

Exploring Everyday Things with R and
Ruby. This book oddly goes from a couple
of basic introductory chapters to some
fairly robust, beyond-beginner program-
ming examples; for those who are just
starting to code, much of the book may
be tough to follow at the outset. However,
the intro to R is one of the better ones I’ve
read, including lot of language fundamen-
tals and basics of graphing with ggplot2.
Plus experienced programmers can see how
author Sau Sheong Chang splits up tasks
between a general language like Ruby and
the statistics-focused R.

Online references
4 data wrangling tasks in R for advanced
beginners. This follow-up to our Beginner’s
Guide outlines how to do several specific
data tasks in R: add columns to an exist-
ing data frame, get summaries, sort results
and reshape data. With sample code and
explanations.

Data manipulation tricks: Even better in
R. From working with dates to reshaping
data to if-then-else statements, see how to
perform common data munging tasks. You
can also download these R tips & tricks as
a PDF (free Insider registration required).

Cookbook for R. Not to be confused with
the R Cookbook book mentioned above,
this website by software engineer Winston
Chang (author of the R Graphics Cook-
book) offers how-to’s for tasks such as data
input and output, statistical analysis and
creating graphs. It’s got a similar format
to an O’Reilly Cookbook; and while not
as complete, can be helpful for answering
some “How do I do that?” questions.

Quick-R. This site has a fair amount of
samples and brief explanations grouped
by major category and then specific items.
For example, you’d head to “Stats” and

then “Frequencies and crosstabs” to get
an explainer of the table() function. This
ranges from basics (including useful how-
to’s for customizing R startup) through
beyond-beginner statistics (matrix algebra,
anyone?) and graphics. By Robert I. Kaba-
coff, author of R in Action.

R Reference Card. If you want help remem-
bering function names and formats for vari-
ous tasks, this 4-page PDF is quite useful
despite its age (2004) and the fact that
a link to what’s supposed to be the latest
version no longer works. By Tom Short, an
engineer at the Electric Power Research
Institute.

A short list of R the most useful commands.
Commands grouped by function such as
input, “moving around” and “statistics
and transformations.” This offers minimal
explanations, but there’s also a link to a
longer guide to Using R for psychologi-
cal research. HTML format makes it easy
to cut and paste commands. Also some-
what old, from 2005. By William Revelle,
psychology professor at Northwestern
University.

R Graph Catalog. Lots of graph and other
plot examples, easily searchable and each
with downloadable code. All are made with
ggplot2 based on visualization ideas in Cre-
ating More Effective Graphs. Maintained by
Joanna Zhao and Jennifer Bryan.

Beautiful Plotting in R: A ggplot2 Cheat-
sheet. Easy to read with a lot of useful
information, from starting with default
plots to customizing title, axes, legends;
creating multi-panel plots and more. By
Zev Ross.

Frequently Asked Questions about R. Some
basics about reading, writing, sorting and
shaping data as well as a lineup of how to
do various statistical operations and a few
specialized graphics such as spaghetti plots.

http://www.computerworld.com
http://www.amazon.com/Exploring-Everyday-Things-Ruby-Learning/dp/1449315151
http://www.amazon.com/Exploring-Everyday-Things-Ruby-Learning/dp/1449315151
http://www.computerworld.com/article/2486425/business-intelligence/4-data-wrangling-tasks-in-r-for-advanced-beginners.html
http://www.computerworld.com/article/2486425/business-intelligence/4-data-wrangling-tasks-in-r-for-advanced-beginners.html
http://www.computerworld.com/article/2497143/business-intelligence/beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence/beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2597816/business-intelligence/data-manipulation-tricks--even-better-in-r.html
http://www.computerworld.com/article/2597816/business-intelligence/data-manipulation-tricks--even-better-in-r.html
http://www.computerworld.com/article/2488581/database-administration/r-data-manipulation-tricks--pdf.html
http://www.computerworld.com/article/2488581/database-administration/r-data-manipulation-tricks--pdf.html
http://www.cookbook-r.com/
http://www.statmethods.net/
http://www.amazon.com/R-Action-Robert-Kabacoff/dp/1935182390/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.personality-project.org/r/r.commands.html
http://www.personality-project.org/r/
http://www.personality-project.org/r/
http://shinyapps.stat.ubc.ca/r-graph-catalog/
http://www.amazon.com/Creating-Effective-Graphs-Naomi-Robbins/dp/0985911123
http://www.amazon.com/Creating-Effective-Graphs-Naomi-Robbins/dp/0985911123
http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/
http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/
http://www.ats.ucla.edu/stat/r/faq/default.htm

R: a beginner’s guide

36

C O M P U T E RWO R L D . C O M

From UCLA’s Institute for Digital Research
and Education.

R Reference Card for Data Mining. Includes
examples and other documentation. includ-
ing a substantial portion of his book R and
Data Mining published by Elsevier in 2012.
By Yanchang Zhao.

Spatial Cheat Sheet. For those doing GIS
and spatial analysis work, this list offers
some key functions and packages for work-
ing with spatial vector and raster data. By
Barry Stephen Rowlingson at Lancaster
University in the U.K.

Online tools
Web interface for ggplot2. This online
tool by UCLA Ph.D. candidate Jeroen
Ooms creates an interactive front end for
ggplot2, allowing users to input tasks they
want to do and get a plot plus R code in
return. Useful for those who want to learn
more about using ggplot2 for graphics
without having to read through lengthy
documentation.

Ten Things You Can Do in R That You
Would’ve Done in Microsoft Excel. From
the R for Dummies Web site, these code
samples aim to help Excel users feel more
comfortable with R.

Videos
Twotorials. You’ll either enjoy these snappy
2-minute “twotorial” videos or find them, oh,
corny or over the top. I think they’re both
informative and fun, a welcome antidote to
the typically dry how-to’s you often find in
statistical programming. Analyst Anthony
Damico takes on R in 2-minute chunks,
from “how to create a variable with R” to
“how to plot residuals from a regression in
R;” he also tackles an occasional problem
such as “how to calculate your ten, fifteen,

or twenty thousandth day on earth with R.”
I’d strongly recommend giving this a look if
textbook-style instruction leaves you cold.

 ■ Sample “Twotorial” video.

Google Developers’ Intro to R. This series
of 21 short YouTube videos includes some
basic R concepts, a few lessons on reshap-
ing data and some info on loops. In addi-
tion, six videos focus on a topic that’s often
missing in R intros: working with and
writing your own functions. This YouTube
playlist offers a good programmer’s intro-
duction to the language — just note that if
you’re looking to learn more about visual-
izations with R, that’s not one of the topics
covered.

 ■ This video in the Google Develop-
ers’ R series introduces functions in R.

Up and Running with R. This lynda.com
video class covers the basics of topics
such as using the R environment, read-
ing in data, creating charts and calculating

http://www.computerworld.com
https://2780fa3c-a-62cb3a1a-s-sites.googlegroups.com/site/rdatamining/docs/R-refcard-data-mining.pdf
http://www.maths.lancs.ac.uk/~rowlings/Teaching/UseR2012/cheatsheet.html
http://rweb.stat.ucla.edu/ggplot2/
http://rfordummies.com/sample-code/chapter-19-ten-things-you-can-do-in-r-that-you-wouldve-done-in-microsoft-excel/
http://rfordummies.com/sample-code/chapter-19-ten-things-you-can-do-in-r-that-you-wouldve-done-in-microsoft-excel/
http://www.twotorials.com/
https://www.screenr.com/fCs8
http://www.youtube.com/watch?v=iffR3fWv4xw&list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP
http://youtu.be/Z1wB1rHAYzQ
http://www.lynda.com/R-tutorials/Up-Running-R/120612-2.html

R: a beginner’s guide

37

C O M P U T E RWO R L D . C O M

statistics. The curriculum is limited, but
presenter Barton Poulson tries to explain
what he’s doing and why, not simply run
commands. He also has a more in-depth
6-hour class, R Statistics Essential Train-
ing. Lynda.com is a subscription service
that starts at $25/month, but several of the
videos are available free for you to view and
see if you like the instruction style, and
there’s a 7-day free trial available.

Coursera: Computing for Data Analysis.
Coursera’s free online classes are time-
sensitive: You’ve got to enroll while they’re
taking place or you’re out of luck. However,
if there’s no session starting soon, instruc-
tor Roger Peng, associate professor of
biostatistics at Johns Hopkins University,
posted his lectures on YouTube; Revolution
Analytics then collected them on a handy
single page. While I found some of these
a bit difficult to follow at times, they are
packed with information, and you may find
them useful.

 ■ Intro video for the Coursera Com-
puting for Data Analysis course

Coursera: Data Analysis. This was more
of an applied statistics class that uses R as
opposed to one that teaches R; but if you’ve
got the R basics down and want to see it in
action, this might be a good choice. There
are no upcoming scheduled sessions for
this at Coursera, but instructor Jeff Leek
— an assistant professor of biostatistics at

Johns Hopkins, posted his lecture videos
on YouTube, and Revolution Analytics col-
lected links to them all by week.

 ■ Intro video for Coursera Data
Analysis online class

Coursera: Statistics One. If you don’t mind
going through a full, 12-week stats course
along with learning R, Princeton Uni-
versity senior lecturer Andrew Conway’s
class includes an introduction to R. “All
the examples and assignments will involve
writing code in R and interpreting R out-
put,” says the course description. You can
check the Coursera link to see if and when
future sessions are scheduled.

Introduction to Data Science with R. At
$160 this O’Reilly training course is some-
what pricey considering how many free and
lower-cost video classes there are out there.
However, if you’re looking for a step-by-
step intro to R, this is a useful course, start-
ing with language and ggplot2 visualization
basics through modeling. It’s taught by
RStudio Master Instructor Garrett Grol-
emund, who focuses on hands-on learning
as well as explaining a few of the language’s
quirks. If cost is an issue and you’re not in
a hurry, sign up for O’Reilly’s deal emails
and you may eventually find a 50% off sale.

Data Analysis and Visualization Using R.
Free course that uses both video and inter-
active R to teach language basics, ggplot2
visualization basics, some statistical tests

http://www.computerworld.com
http://www.lynda.com/R-tutorials/R-Statistics-Essential-Training/142447-2.html
http://www.lynda.com/R-tutorials/R-Statistics-Essential-Training/142447-2.html
https://www.coursera.org/course/compdata
http://www.youtube.com/user/rdpeng/videos?view=1&flow=grid
http://blog.revolutionanalytics.com/2012/12/coursera-videos.html
http://blog.revolutionanalytics.com/2012/12/coursera-videos.html
http://youtu.be/kzxHxFHW6hs
http://www.youtube.com/user/jtleek2007/videos?flow=list&live_view=500&tag_id=UC8xNPQ-3a5t9uMU7Vah-jWA.3.week-1&view=46
http://www.youtube.com/user/jtleek2007/videos?flow=list&live_view=500&tag_id=UC8xNPQ-3a5t9uMU7Vah-jWA.3.week-1&view=46
http://blog.revolutionanalytics.com/2013/04/coursera-data-analysis-course-videos.html
http://blog.revolutionanalytics.com/2013/04/coursera-data-analysis-course-videos.html
http://youtu.be/OfgjgEXxskg
https://www.coursera.org/course/stats1
http://shop.oreilly.com/product/0636920034834.do
http://varianceexplained.org/RData/

R: a beginner’s guide

38

C O M P U T E RWO R L D . C O M

and exploratory data analysis includ-
ing data.table. Videos by Princeton Ph.D.
student David Robinson and Neo Christo-
pher Chung, Ph.D, filmed and edited at the
Princeton Broadcast Center.

Other online introductions
and tutorials
Try R This beginner-level interactive online
course will probably seem somewhat basic
for anyone who has experience in another
programming language. However, even if
the focus on pirates and plunder doesn’t
appeal to you, it may be a good way to get
some practice and get more comfortable
using R syntax.

An Introduction to R. Let’s not forget the
R Project site itself, which has numerous
resources on the language including this
intro. The style here is somewhat dry, but
you’ll know you’re getting accurate, up-to-
date information from the R Core Team.

How to Visualize and Compare Distri-
butions. This short and highly readable
Flowing Data tutorial goes over traditional
visualizations such as histograms and box
plots. With downloadable code.

Handling and Processing Strings in
R. This PDF download covers many
things you’re want to do with text, from
string lengths and formatting to search
and replace with regular expressions to
basic text analysis. By statistician Gaston
Sanchez.

Learning statistics with R: A tutorial for
psychology students and other beginners
by Daniel Navarro at the University of
Adelaide (PDF). 500+ pages that go from
“Why do we learn statistics” and “Statis-
tics in every day life” to linear regression
and ANOVA (ANalysis Of VAriance). If you
don’t need/want a primer in statistics, there

are still many sections that focus specifi-
cally on R.

R Tutorial. A reasonably robust beginning
guide that includes sections on data types,
probability and plots as well as sections
focused on statistical topics such as linear
regression, confidence intervals and p-val-
ues. By Kelly Black, associate professor at
Clarkson University.

r4stats.com. This site is probably best
known in the R community for author Bob
Muenchen’s tracking of R’s popularity vs.
other statistical software. However, in the
Examples section, he’s got some R tutorials
such as basic graphics and graphics with
ggplots. He’s also posted code for tasks
such as data import and extracting por-
tions of your data comparing R with alter-
natives such as SAS and SPSS.

Aggregating and restructuring data. This
excerpt from R in Action goes over one of
the most important subjects in using R:
reshaping your data so it’s in the format
needed for analysis and then grouping
and summarizing that data by factors. In
addition to touching on base-R functions
like the useful-but-not-always-well-known
aggregate(), it also covers melt() and cast()
with the reshape package. By Robert I.
Kabacoff.

Getting started with charts in R. From the
popular FlowingData visualization web-
site run by Nathan Yau, this tutorial offers
examples of basic plotting in R. Includes
downloadable source code. (While many
FlowingData tutorials now require a paid
membership to the site, as of May 2013 this
one did not.)

Using R for your basic statistical Needs
LISA Short Course. Aimed at those who
already know stats but want to learn R, this
is a file of R code with comments, making it
easy to run (and alter) the code yourself.

http://www.computerworld.com
http://tryr.codeschool.com/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://flowingdata.com/2012/05/15/how-to-visualize-and-compare-distributions/
http://flowingdata.com/2012/05/15/how-to-visualize-and-compare-distributions/
http://gastonsanchez.com/blog/resources/how-to/2013/09/22/Handling-and-Processing-Strings-in-R.html
http://gastonsanchez.com/blog/resources/how-to/2013/09/22/Handling-and-Processing-Strings-in-R.html
http://health.adelaide.edu.au/psychology/ccs/docs/lsr/lsr-0.3.pdf
http://www.cyclismo.org/tutorial/R/
http://r4stats.com/
http://r4stats.com/articles/popularity/
http://r4stats.com/articles/popularity/
http://r4stats.com/examples/graphics-traditional/
http://r4stats.com/examples/graphics-ggplot2/
http://r4stats.com/examples/graphics-ggplot2/
http://r4stats.com/examples/data-import/
http://r4stats.com/examples/selecting-vars-and-obs/
http://r4stats.com/examples/selecting-vars-and-obs/
http://www.r-statistics.com/2012/01/aggregation-and-restructuring-data-from-r-in-action/
http://flowingdata.com/2012/12/17/getting-started-with-charts-in-r/
http://www.lisa.stat.vt.edu/sites/default/files/Using_R_for_Your_Basic_Statistical_Needs.r
http://www.lisa.stat.vt.edu/sites/default/files/Using_R_for_Your_Basic_Statistical_Needs.r

R: a beginner’s guide

39

C O M P U T E RWO R L D . C O M

The programming is easy to follow, but if
you haven’t brushed up on your stats lately,
be advised that comments such as

Suppose we’d like to produce a reduced
set of independent variables. We could use
the function # step() to perform stepwise
model selection based on AIC which is
-2log(Likelihood) + kp? Where k=2 # and
p = number of model parameters (beta
coefficients).

may be tough to follow. By Nels Johnson at
Virginia Tech’s Laboratory for Interdisci-
plinary Statistical Analysis.

Producing Simple Graphs with R. Although
6+ years old now, this gives a few more
details and examples for several of the visu-
alization concepts touched on in our begin-
ner’s guide. By Frank McCown at Harding
University.

Short courses. Materials from various
courses taught by Hadley Wickham, chief
scientist at RStudio and author of several
popular R packages including ggplot2.
Features slides and code for topics beyond
beginning R, such as R development master
class.

Quick introduction to ggplot2. Very nice,
readable and — as promised — quick intro-
duction to the ggplot2 add-on graphic
package in R, incuding lots of sample plots
and code. By Google engineer Edwin Chen.

ggplot2 workshop presentation. This
robust, single-but-very-long-page tutorial
offers a detailed yet readable introduction
to the ggplot2 graphing package. What sets
this apart is its attention to its theoretical
underpinnings while also offering useful,
concrete examples. From a presentation at
the Advances in Visual Methods for Lin-
guistics conference. By Josef Fruehwald,
then a PhD candidate at the University of
Pennsylvania.

ggplot2_tutorial.R. This online page at
RPubs.com, prepared for the Santa Barbara
R User Group, includes a lot of commented
R code and graph examples for creating
data visualizations with ggplot2.

More and Fancier Graphics. This one-page
primer features loads of examples, includ-
ing explainers of a couple of functions that
let you interact with R plots, locator() and
identify() as well as a lot of core-R plotting
customization. By William B. King, Coastal
Carolina University.

ggplot2 Guide. This ggplot2 explainer skips
the simpler qplot option and goes straight
to the more powerful but complicated
ggplot command, starting with basics of a
simple plot and going through geoms (type
of plot), faceting (plotting by subsets),
statistics and more. By data analyst George
Bull at Sharp Statistics.

Using R. In addition to covering basics,
there are useful sections on data manipu-
lation — an important topic not easily
covered for beginners — as well as get-
ting statistical summaries and generating
basic graphics with base R, the Lattice
package and ggplot2. Short explainers are
interspersed with demo code, making this
useful as both a tutorial and reference site.
By analytics consultant Alastair Sanderson,
formerly research fellow in the Astrophys-
ics & Space Research (ASR) Group at the
University of Birmingham in the U.K.

The Undergraduate Guide to R. This is a
highly readable, painless introduction to R
that starts with installation and the com-
mand environment and goes through data
types, input and output, writing your own
functions and programming tips. Viewable
as a Google Doc or downloadable as a PDF,
plus accompanying files. By Trevor Martin,
then at Princeton University, funded in part
by an NIH grant.

http://www.computerworld.com
http://www.harding.edu/fmccown/r/
http://courses.had.co.nz/
http://blog.echen.me/2012/01/17/quick-introduction-to-ggplot2/
http://www.ling.upenn.edu/~joseff/avml2012/
http://rpubs.com/frank_davenport/6255
http://rpubs.com/
http://ww2.coastal.edu/kingw/statistics/R-tutorials/graphs.html
http://sharpstatistics.co.uk/r/ggplot2-guide/
http://www.sr.bham.ac.uk/~ajrs/R/index.html
https://sites.google.com/site/undergraduateguidetor/manual-files

R: a beginner’s guide

40

C O M P U T E RWO R L D . C O M

How to turn CSV data into interactive visu-
alizations with R and rCharts. 9–page slide-
show gives step-by-step instructions on
various options for generating interactive
graphics. The charts and graphs use jQuery
libraries as the underlying technology but
only a couple of line of R code are needed.
By Sharon Machlis, Computerworld.

Higher Order Functions in R. If you’re at
the point where you want to apply func-
tions on multiple vectors and data frames,
you may start bumping up against the lim-
its of R’s apply family. This post goes over
6 extremely useful base R functions with
readable explanations and helpful examples.
By John Mules White, “soon-to-be scientist
at Facebook.”

Introduction to Linear Regression Using R
and Quandl While this does indeed pro-
mote Quandl as your data source, that data
is free, and for those interested in using R
for regressions, you’ll find several detailed
walk-throughs from data import through
statistical analysis.

Introduction to dplyr. The dplyr package
(by ggplot2 creator Hadley Wickham) sig-
nificantly speeds up operations like group-
ing and sorting of data frames. It also aims
to rationalize such functions by using a
common syntax. In this short introductory
vignette, you’ll learn about “five basic data
manipulation” — filter(), arrange(), select(),
mutate() and summarise() — including
examples, as well as how to chain them
together for more streamlined, readable
code. Another useful package for manipu-
lating data in R: doBy.

Applied Time Series Analysis. Text-based
online class from Penn State “to learn and
apply statistical methods for the analysis
of data that have been observed over time.”
Access to the articles is free, although there
is no community or instructor participation.

13 resources for time series analysis. A
video and 12 slide presentations by Rob
J. Hyndman, author of Forecasting time
series using R. Also has links to exercises
and answers to the exercises.

knitr in a knutshell. knitR is designed to
easily create reports and other documents
that can combine text, R code and the
results of R code — in short, a way to share
your R analyses with others. This “minimal
tutorial” by Karl Broman goes over subjects
such as creating Markdown documents
and adding graphics and tables, along with
links to resources for more info.

More free downloads and
websites from academia:
Introducing R. Slide presentation from the
UCLA Institute for Digital Research and
Education, with downloadable data and
code.

Introducing R. Although titled for begin-
ners and including sections on getting
started and reading data, this also shows
how to use R for various types of linear
models. By German Rodriguez at Princeton
University’s Office of Population Research.

R: A self-learn tutorial. Intro PDF from
National Center for Ecological Analysis and
Synthesis at UC Santa Barbara. While a bit
dry, it goes over a lot of fundamentals and
includes exercises.

Statistics with R Computing and Graphics.
Unlike many PDF downloads from aca-
demia, this one is both short (15 pages) and
basic, with some suggested informal exer-
cises as well as explanations on things like
getting data into R and statistical modeling
(understanding statistical concepts like lin-
ear modeling is assumed). By Kjell Konis,
then at the University of Oxford.

http://www.computerworld.com
http://www.computerworld.com/article/2473365/business-intelligence-106897-how-to-turn-csv-data-into-interactive-visualizations-with-r-and-rchart.html
http://www.computerworld.com/article/2473365/business-intelligence-106897-how-to-turn-csv-data-into-interactive-visualizations-with-r-and-rchart.html
http://www.johnmyleswhite.com/notebook/2010/09/23/higher-order-functions-in-r/
https://www.quandl.com/resources/linear-regression-tutorial/index
https://www.quandl.com/resources/linear-regression-tutorial/index
http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://people.math.aau.dk/~sorenh/software/doBy/vignette/doBy-main.html
https://onlinecourses.science.psu.edu/stat510/?q=node/41
https://www.otexts.org/fpp/resources
http://kbroman.github.io/knitr_knutshell/
http://www.ats.ucla.edu/stat/r/seminars/intro.htm
http://data.princeton.edu/R/gettingStarted.html
http://www.nceas.ucsb.edu/files/scicomp/Dloads/RProgramming/BestFirstRTutorial.pdf
http://www.stats.ox.ac.uk/~konis/OUCS/ComputingGraphics.pdf

R: a beginner’s guide

41

C O M P U T E RWO R L D . C O M

Little Book of R for Time Series. This is
extremely useful if you want to use R for
analyzing data collected over time, and also
has some introductory sections for general
R use even if you’re not doing time series.
By Avril Coghlan at the Wellcome Trust
Sanger Instituie, Cambridge, U.K.

Introduction to ggplot2. 11-page PDF with
some ggplot basics, by N. Matloff at UC
Davis.

Communities
Pretty much every social media plat-
form has an R group. I’d particularly
recommend:

Statistics and R on Google+. Community
members are knowledgeable and helpful,
and various conversation threads engage
both newbies and experts.

Twitter #rstats hashtag. Level of discourse
here ranges from beginner to extremely
advanced, with a lot of useful R resources
and commentary getting posted.

You can also find R groups on Linke-
dIn, Reddit and Facebook, among other
platforms.

Stackoverflow has a very active R commu-
nity where people ask and answer coding
questions. If you’ve got a specific coding
challenge, it’s definitely worth searching
here to see if someone else has already
asked about something similar.

There are dozens of R User Meetups world-
wide. In addition, there are other user
groups not connected with Meetup.com.
Revolution Analytics has an R User Group
Directory.

Blogs & blog posts
R-bloggers. This site aggregates posts
and tutorials from more than 250 R blogs.
While both skill level and quality can vary,
this is a great place to find interesting posts
about R — especially if you look at the “top
articles of the week” box on the home page.

Revolutions. There’s plenty here of inter-
est to all levels of R users. Although author
Revolution Analytics is in the business of
selling enterprise-class R platforms, the
blog is not focused exclusively on their
products.

Post: 10 R packages I wish I knew about
earlier. Not sure all of these would be in
my top 10, but unless you’ve spent a fair
amount of time exploring packages, you’ll
likely find at least a couple of interesting
and useful R add-ons.

Post: R programming for those coming
from other languages. If you’re an experi-
enced programmer trying to learn R, you’ll
probably find some useful tips here.

Post: A brief introduction to ‘apply’ in R. If
you want to learn how the apply() function
family works, this is a good primer.

Translating between R and SQL. If you’re
more experienced (and comfortable) with
SQL than R, it can be frustrating and
confusing at times to figure out how to do
basic data tasks such as subsetting your
data. Statistics consultant Patrick Burns
shows how to do common data slicing in
both SQL and R, making it easier for expe-
rienced database users to add R to their
toolkit.

Graphs & Charts in base R, ggplot2 and
rCharts. There are lots of sample charts
with code here, showing how to do similar
visualization tasks with basic R, the ggplot2

http://www.computerworld.com
http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/
http://heather.cs.ucdavis.edu/~matloff/GGPlot2/GGPlot2Intro.pdf
https://plus.google.com/communities/117681470673972651781
https://twitter.com/search?q=%23rstats
http://www.linkedin.com/groups/R-Project-Statistical-Computing-77616
http://www.linkedin.com/groups/R-Project-Statistical-Computing-77616
http://www.reddit.com/r/rstats
https://www.facebook.com/pages/The-R-Project-for-Statistical-Computing/155948597756419
http://stackoverflow.com/questions/tagged/r
http://r-users-group.meetup.com/
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://www.r-bloggers.com/
http://blog.revolutionanalytics.com/
http://blog.yhathq.com/posts/10-R-packages-I-wish-I-knew-about-earlier.html
http://blog.yhathq.com/posts/10-R-packages-I-wish-I-knew-about-earlier.html
http://www.johndcook.com/R_language_for_programmers.html
http://www.johndcook.com/R_language_for_programmers.html
http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/
http://www.burns-stat.com/translating-r-sql-basics/
http://analyticsandvisualization.blogspot.com/p/blog-page_7.html
http://analyticsandvisualization.blogspot.com/p/blog-page_7.html

R: a beginner’s guide

42

C O M P U T E RWO R L D . C O M

add-on package and rCharts for interactive
HTML visualizations.

When to use Excel, when to use R? For
spreadsheet users starting to learn R, this
is a useful question to consider. Michael
Milton, author of Head First Data Analysis
(which discusses both Excel and R), offers
practical (and short) advice on when to use
each.

A First Step Towards R From Spreadsheets.
Some advice on both when and how to start
moving from Excel to R, with a link to a
follow-up post, From spreadsheet thinking
to R thinking.

Using dates and times in R. This post from
a presentation by Bonnie Dixon at the
Davis R Users’ group goes over some of the
intricacies of dates and times in R, includ-
ing various date/time classes as well as
different options for performing date/time
calculations and other manipulations.

Scraping Pro-Football Data and Interactive
Charts using rCharts, ggplot2, and shiny.
This is a highly useful example of begin-
ning-to-end data analysis with R. You’ll
see a sample of how to scrape data off a
website, clean and restructure the data and
then visualize it in several ways, including
interactive Web graphics — all with down-
loadable code. By Vivek Patil, an associate
professor at Gonzaga University.

Search
Searching for “R” on a general search
engine like Google can be somewhat frus-
trating, given how many utterly unrelated
English words include the letter r. Some
search possibilities:

RSeek is a Web search engine that just
returns results from certain R-focused
websites.

R site search returns results just from
R functions, package “vignettes” (docu-
mentation that helps explain how a func-
tion works) and task views (focusing on
a particular field such as social science or
econometrics).

Misc
Google’s R Style Guide. Want to write neat
code with a consistent style? You’ll prob-
ably want a style guide; and Google has
helpfully posted their internal R style for
all to use. If that one doesn’t work for you,
Hadley Wickham has a fairly abbreviated R
style guide based on Google’s but “with a
few tweaks.”

RStudio documentation. If you’re using
RStudio, it’s worth taking a look at parts
of the documentation at some point so you
can take advantage of all it has to offer.

History of R Financial Time Series Plotting.
Although, as the name implies, this focuses
on financial time-series graphics, it’s also
a useful look at various options for plot-
ting any data over time. With lots of code
samples along with graphics. By Timely
Portfolio on GitHub.

Grouping & Summarizing Data in R. There
are so many ways to do these tasks in R
that it can be a little overwhelming even for
those beyond the beginner stage to decide
which to use when. This downloadable
Slideshare presentation by analyst Jeffrey
Breen from the Greater Boston useR Group
is a useful overview.

Apps
R Instructor. This app is primarily a well-
designed, very thorough index to R, offer-
ing snippets on how to import, summarize
and plot data, as well as an introductory
section. An “I want to...” section gives

http://www.computerworld.com
http://answers.oreilly.com/topic/1029-when-to-use-excel-when-to-use-r/
http://www.burns-stat.com/first-step-towards-r-spreadsheets/
http://www.burns-stat.com/spreadsheet-r-vector/
http://www.burns-stat.com/spreadsheet-r-vector/
http://www.noamross.net/blog/2014/2/10/using-times-and-dates-in-r---presentation-code.html
http://www.analyticsandvisualization.com/2014/02/scraping-pro-football-data-and.html
http://www.analyticsandvisualization.com/2014/02/scraping-pro-football-data-and.html
http://www.rseek.org/
http://finzi.psych.upenn.edu/search.html
http://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/Style.html
http://www.rstudio.com/ide/docs/
http://timelyportfolio.github.io/rCharts_time_series/history.html
http://www.slideshare.net/jeffreybreen/grouping-summarizing-data-in-r
http://www.rinstructor.com/

R: a beginner’s guide

43

C O M P U T E RWO R L D . C O M

short how-to’s on a variety of tasks such
as changing data classes or column/row
names, ordering or subsetting data and
more. Similar information is available free
online; the value-add is if you want the
info organized in an attractive mobile app.
Extras include instructional videos and a
“statistical tests” section explaining when
to use various tests as well as R code for
each. For iOS and Android, about $5.

Software
Comprehensive R Archive Network
(CRAN). The most important of all: home
of the R Project for Statistical Computing,
including downloading the basic R plat-
form, FAQs and tutorials as well as thou-
sands of add-on packages. Also features
detailed documentation and a number of
links to more resources.

RStudio. You can download the free RStu-
dio IDE as well as RStudio’s Shiny project
aimed at turning R analyses into interactive
Web applications.

Revolution Analytics. In addition to its
commercial Revolution R Enterprise, you
can request a download of their free Revo-
lution R Community (you’ll need to provide
an email address). Both are designed to
improve R performance and reliability.

Tibco. This software company recently
released a free Tibco Enterprise Runtime
for R Developers Edition to go along with
its commercial Tibco Enterprise Runtime
for R engine aimed at helping to integrate R
analysis into other enterprise platforms.

Shiny for interactive Web apps. This open-
source project from RStudio is aimed at
creating interactive Web applications from
R analysis and graphics. There’s a Shiny
tutorial at the RStudio site; to see more

examples, Show Me Shiny offers a gallery
of apps with links to code.

Swirl. This R package for interactive learn-
ing teaches basic statistics and R together.
See more info on version 2.0.

http://www.computerworld.com
https://itunes.apple.com/us/app/r-instructor/id527985215?mt=8
https://play.google.com/store/apps/details?id=appinventor.ai_RInstructor.R2&feature=search_result#?t=W251bGwsMSwxLDEsImFwcGludmVudG9yLmFpX1JJbnN0cnVjdG9yLlIyIl0.
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/
http://www.rstudio.com/
http://www.rstudio.com/ide/
http://www.rstudio.com/ide/
http://www.rstudio.com/shiny/
http://www.revolutionanalytics.com/
http://www.revolutionanalytics.com/products/revolution-enterprise.php
http://info.revolutionanalytics.com/download-revolution-r-community.html
http://info.revolutionanalytics.com/download-revolution-r-community.html
http://www.tibco.com/
http://tap.tibco.com/storefront/trialware/tibco-enterprise-runtime-for-r/prod15307.html
http://tap.tibco.com/storefront/trialware/tibco-enterprise-runtime-for-r/prod15307.html
http://spotfire.tibco.com/en/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr.aspx
http://spotfire.tibco.com/en/discover-spotfire/what-does-spotfire-do/predictive-analytics/tibco-enterprise-runtime-for-r-terr.aspx
http://www.rstudio.com/shiny/
http://rstudio.github.io/shiny/tutorial/
http://rstudio.github.io/shiny/tutorial/
http://www.showmeshiny.com/
http://swirlstats.com/
http://simplystatistics.org/2014/01/28/swirl-2/

